
CONDITIONAL EXPECTATION AND MARTINGALES

1. INTRODUCTION

Martingales play a role in stochastic processes roughly similar to that played by conserved
quantities in dynamical systems. Unlike a conserved quantity in dynamics, which remains
constant in time, a martingale’s value can change; however, its expectation remains constant
in time. More important, the expectation of a martingale is unaffected by optional sampling.
In fact, this can be used as a provisional definition: A discrete-timemartingale is a sequence
{Xn}n≥0 of integrable real (or complex) random variables with the property that for every bounded
stopping time τ, the Optional Sampling Formula

(1) E Xτ = E X0

is valid.
We have seen the Optional Sampling Formula before, in various guises. In particular, the

Wald Identities I,II, and III are all instances of (1). Let ξ0,ξ1, . . . be independent, identically
distributed random variables, and let Sn = ξ1 + ξ2 + ·· ·ξn be the nth partial sum. Denote by
µ,σ2, and ϕ(θ) the mean, variance, and moment generating function of ξ1, that is,

µ= Eξ1,

σ2 = E(ξ1 −µ)2, and

ϕ(θ) = E exp{θξ1}.

Corresponding to each of these scalar quantities is a martingale:

Mn := Sn −nµ,(2)

Vn := (Sn −nµ)2 −nσ2, and(3)

Zn(θ) := exp{θSn}/ϕ(θ)n .(4)

Observe that there is a separate martingale Zn(θ) for every real value of θ such that ϕ(θ) <∞.
The Optional Sampling Formula could be taken as the definition of a martingale, but usually

isn’t. The standard approach, which we will follow, uses the notion of conditional expectation.

2. CONDITIONAL EXPECTATION

2.1. Definition of Conditional Expectation. For random variables defined on discrete proba-
bility spaces, conditional expectation can be defined in an elementary manner: In particular,
the conditional expectation of a discrete random variable X given the value y of another dis-
crete random variable Y may be defined by

(5) E(X |Y = y) =∑
x

xP (X = x |Y = y),

where the sum is over the set of all possible values x of X . Note that this expression depends on
the value y . For discrete random variables that take values in finite sets there are no difficulties

1



regarding possible divergence of the sum, nor is there any difficulty regarding the meaning of
the conditional probability P (X = x |Y = y).

For continuous random variables, or, worse, random variables that are neither discrete nor
have probability densities, the definition (5) is problematic. There are two main difficulties: (a)
If X is not discrete, then the sum must be replaced by an integral of some sort; and (b) If Y is
not discrete then it is no longer clear how to define the condtional probabilities P (X = x |Y = y).
Fortunately, there is an alternative way of defining conditional expectation that works in both
the discrete and the indiscrete cases, and additionally allows for conditioning not only on the
value of a single random variable, but for conditioning simultaneously on the values of finitely
or even countably many random variables or random vectors:

Definition 1. Let X be a real-valued random variable such that either E |X | <∞ or X ≥ 0, and let
Y be a random variable, random vector, or other random object taking values in a measurable
space (Y ,H ).The conditional expectation E(X |Y ) is the essentially unique measurable real-
valued function of Y such that for every bounded, measurable, real-valued function g (Y ),

(6) E X g (Y ) = E(E(X |Y )g (Y )).

Definition 2. More generally1, if X is defined on a probability space (Ω,F ,P ) and G ⊂ F is a
σ−algebra contained in F , then E(X |G ) is the essentially unique G -measurable random vari-
able such that

(7) E(X Z ) = E(E(X |G )Z )

for every bounded, G−measurable random variable Z .

It is by no means clear a priori that such functions E(X |Y ) or E(X |G ) should always exist, nor
is it obvious that they should be unique. In fact, the existence of such a function is an important
theorem of measure theory, the Radon-Nikodym theorem, which I will take as known. The
uniqueness of the function is not difficult to prove:

Proof of Uniqueness. Suppose that there are distinct functions h1(y) and h2(y) such that, for
every bounded function g (y),

E X g (Y ) = Eh1(Y )g (Y ) and

E X g (Y ) = Eh2(Y )g (Y ).

Then by the linearity of ordinary expectation (taking the difference of the two equations) it must
be the case that for every bounded function g (y),

0 = E(h1(Y )−h2(Y ))g (Y );

in particular, this equation must hold for the function g (y) that is 1 if h1(y) > h2(y) and 0 oth-
erwise. But this implies that P {h1(Y ) > h2(Y )} = 0. A similar argument shows that P {h2(Y ) =
h1(Y )} = 0. It follows that P {h1(Y ) = h2(Y )} = 1. �

1Nearly all of the σ−algebras that one encounters in typical situations are generated, either explicitly or im-
plicitly, by random variables Y valued in a Polish space (a complete, separable metric space). In particular, the
σ−algebras that arise naturally in the study of stochastic processes are usually generated by sample paths. If Y
generates G , that is, if G consists of all events of the form {Y ∈ B} where B is a Borel subset of the range of Y , then
every G−measurable random variable is a measurable function of Y , and conversely (Exercise!). Hence, Defini-
tions 1 and 2 coincide.
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2.2. Equivalence of the Naive and Modern Definitions. It is not difficult to show that the naive
definition (6) coincides with the modern Definition 1 when the random variable X and the
random vector Y = (Y1,Y2, . . . ,Ym) are discrete and assume only finitely many possible values
with positive probability. Define

h(y) =∑
x

xP (X = x |Y = y) =∑
x

x
P {X = x and Y = y}

P {Y = y}

for those values of y such that P {Y = y} > 0. To show that E(X |Y ) = h(Y ), it suffices, by Defini-
tion 1, to show that, for any bounded function g (y),

E X g (Y ) = Eh(Y )g (Y ).

But

E X g (Y ) =∑
y

∑
x

xg (y)P {X = x and Y = y}

=∑
y

g (y)P {Y = y}
∑

x
xP (X = x |Y = y)

=∑
y

g (y)P {Y = y}h(y)

= Eh(Y )g (Y ).

�

2.3. Properties of Conditional Expectation. The raw definition given above can be clumsy to
work with directly. In this section we present a short list of important rules for manipulating and
calculating conditional expectations. The bottom line will be that, in many important respects,
conditional expectations behave like ordinary expectations, with random quantities that are
functions of the conditioning random variable being treated as constants.2

Let Y be a random variable, vector, or object valued in a measurable space, and let X be an
integrable random variable (that is, a random variable with E |X | <∞).

Summary: Basic Properties of Conditional Expectation.

(1) Definition: E X g (Y ) = EE(X |Y )g (Y ) for all bounded measure functions g (y).
(2) Linearity: E(aU +bV |Y ) = aE(U |Y )+bE(V |Y ) for all scalars a,b ∈R.
(3) Positivity: If X ≥ 0 then E(X |Y ) ≥ 0.
(4) Stability: If X is a (measurable) function of Y , then E(X Z |Y ) = X E(Z |Y ).
(5) Independence Law: If X is independent of Y then E(X |Y ) = E X is constant a.s.
(6) Tower Property: If Z is a function of Y then E(E(X |Y ) |Z ) = E(X |Z ).
(7) Expectation Law: E(E(X |Y )) = E X .
(8) Constants: For any scalar a, E(a|Y ) = a.

2Later we’ll prove a theorem to the effect that conditional expectations are ordinary expectations in a certain
sense. For those of you who already know the terminology, this theorem is the assertion that every real random
variable Y — or more generally, every random variable valued in a Polish space — has a regular conditional distri-
bution given any σ−algebra G .
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(9) Jensen Inequalities: If ϕ :R→R is convex and E |X | <∞ then

E(ϕ(X )) ≥ϕ(E X ) and

E(ϕ(X )|Y ) ≥ϕ(E(X |Y ).

In all of these statements, the relations = and ≤ are meant to hold almost surely. Similar state-
ments can be formulated for conditional expectation E(X |G ) on a σ−algebra. Also, properties
(3)–(7) extend to nonnegative random variables X with infinite expectation. All of the properties
can be proved easily, using only Definition 1 and elementary properties of ordinary expectation.
To give an idea of how these arguments go, we shall outline the proofs of the Linearity, Positivity,
and Independence properties below. You should try to check the Stability and Tower Properties
yourself. The Jensen inequality is of a somewhat different character, but it is not difficult to
prove – see below.

Note: The definition (1) requires only that the equation E X g (Y ) = EE(X |Y )g (Y ) be valid for
bounded functions g . A standard argument from measure theory then implies that it holds for
all functions such that the product X g (Y ) has finite first moment. Similarly, Property (4) holds
provided the product has finite first moment.

Proof of the Positivity Property. The idea is to exploit the defining property (6) of conditional
expectation. First, suppose that X ≥ 0. Define B to be the set of possible values of Y for which
the conditional expectation E(X |Y ) < 0, so that the event {E(X |Y ) < 0} coincides with the event
{Y ∈ B}. Then by equation (6),

E X 1B (Y ) = E(E(X |Y )1B (y)).

Since X ≥ 0, the left side of this equality is nonnegative; but by definition of B , the right side is
negative unless P {Y ∈ B} = 0. It follows that P {Y ∈ B} = 0, that is, E(X |Y ) ≥ 0 with probability
one. �

Proof of the Linearity Property. Since each of the conditional expectations E(U |Y ) and E(V |Y )
is a function of Y , so is the linear combination aE(U |Y )+bE(V |Y ). Thus, by Definition 1, to
show that this linear combination is the conditional expectation E(aU +bV |Y ), it suffices to
show that it satisfies equation (6), that is, that for every bounded nonnegative function g (Y ),

(8) E(aU +bV )g (Y ) = E(aE(U |Y )+bE(V |Y ))g (Y ).

But equation (6) holds for X =U and for X =V :

EUg (Y ) = EE(U |Y )g (Y ),

EV g (Y ) = EE(V |Y )g (Y ).

Multiplying these equations by a and b, respectively, and then adding gives (8), because the
unconditional expectation operator is linear. �

Proof of the Independence Property. This relies on the fact that if U and V are independent,
integrable random variables whose product UV is also integrable, then E(UV ) = EU EV . Now
suppose that X is independent of Y , and let g (Y ) be any bounded (measurable) function of Y .
Then E X g (Y ) = E X E g (Y ) = E(E X )g (Y ). Since any constant, and in particular E X , is trivially a
function of Y , Definition 1 implies that E X must be the conditional expectation EW (X |Y ). �
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Proof of the Jensen Inequalities. One of the basic properties of convex functions is that every
point on the graph of a convex function ϕ has a support line: that is, for every argument x∗ ∈ R
there is a linear function yx∗(x) = ax +b such that

ϕ(x∗) = yx∗(x∗) and

ϕ(x) ≥ yx∗(x) for all x ∈R.

Let X be a random variable such that E |X | <∞, so that the expectation E X is well-defined and
finite. Let yE X (x) = ax +b be the support line to the convex function at the point (E X ,ϕ(E X )).
Then by definition of a support line, yE X (E X ) =ϕ(E X ); also, yE X (X ) ≤ϕ(X ), and so

E yE X (X ) ≤ Eϕ(X ).

But because yE X (x) = ax +b is a linear function of x,

E yE X (X ) = yE X (E X ) =ϕ(E X ).

This proves the Jensen inequality for ordinary expectation. The proof for conditional expecta-
tion is similar. For any value of Y , let yE(X |Y )(x) be the support line at the point (E(X |Y ),ϕ(E(X |Y ))).
Then yE(X |Y )(E(X |Y )) =ϕ(E(X |Y )), and for every value of X , yE(X |Y )(X ) ≤ϕ(X ). Consequently,
by the linearity and positivity properties of conditional expectation,

ϕ(E(X |Y )) = yE(X |Y )(E(X |Y ))

= E(yE(X |Y )(X )|Y )

≤ E(ϕ(X )|Y ).

�

2.4. Convergence theorems for conditional expectation. Just as for ordinary expectations, there
are versions of Fatou’s lemma and the monotone and dominated convergence theorems.

Monotone Convergence Theorem . Let Xn be a nondecreasing sequence of nonnegative random
variables on a probability space (Ω,F ,P ), and let X = limn→∞ Xn . Then for any random variable
(or vector) Y ,

(9) E(Xn |Y ) ↑ E(X |Y ).

Fatou’s Lemma . Let Xn be a sequence of nonnegative random variables on a probability space
(Ω,F ,P ), and let X = liminfn→∞ Xn . Then for any random variable (or vector) Y ,

(10) E(X |Y ) ≤ liminfE(Xn |Y ).

Dominated Convergence Theorem . Let Xn be a sequence of real-valued random variables on a
probability space (Ω,F ,P ) such that for some integrable random variable Y and all n ≥ 1,

(11) |Xn | ≤ Y .

Then for any random variable (or vector) Y ,

(12) lim
n→∞E(Xn |Y ) = E(X |G ) and lim

n→∞E(|Xn −X | |Y ) = 0
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As in Properties 1–9 above, the limiting equalites and inequalities in these statements hold
almost surely. The proofs are easy, given the corresponding theorems for ordinary expectations;
I’ll give the proof for the Monotone Convergence Theorem and leave the other two, which are
easier, as exercises.

Proof of the Monotone Convergence Theorem. By the Positivity and Linearity properties of con-
ditional expectation,

E(Xn |Y ) ≤ E(Xn+1 |Y ) ≤ E(X |Y )

for every n. Consequently, the limit V := limn→∞ ↑ E(Xn |Y ) exists with probability one, and V ≤
E(X |Y ). Moreover, since each conditional expectation is Y -measurable, so is V . Set B = {V <
E(X |Y )}; we must show that P (B) = 0. Now B is Y −measurable, so by definition of conditional
expectation,

E(X 1B ) = E(E(X |Y )1B ) and E(Xn1B ) = E(E(Xn |Y )1B ).

But the Monotone Convergence Theorem for ordinary expectation implies that

E X 1B = lim
n→∞E Xn1B and

EV 1B = lim
n→∞EE(Xn |Y )1B ,

so E X 1B = EV 1B . Since V < X on B , this implies that P (B) = 0. �

3. DISCRETE-TIME MARTINGALES

3.1. Definition of a Martingale. Let {Fn}n≥0 be an increasing sequence of σ−algebras in a
probability space (Ω,F ,P ). Such sequences will be called filtrations. Let X0, X1, . . . be an adapted
sequence of integrable real-valued random variables, that is, a sequence with the property that
for each n the random variable Xn is measurable relative to Fn and such that E |Xn | < ∞. In
a typical application in the study of a Markov chain Yn , the σ−algebra Fn might be the small-
est σ−algebra such that the random vector (Y0,Y1, . . . ,Yn) is measurable relative to Fn , and the
random variables Xn numerical functions of the states Yn . The sequence X0, X1, . . . is said to be
a martingale relative to the filtration {Fn}n≥0 if it is adapted, and if for every n,

(13) E(Xn+1 |Fn) = Xn .

Similarly, it is said to be a supermartingale (respectively, submartingale) if for every n,

(14) E(Xn+1 |Fn) ≤ (≥)Xn .

Observe that any martingale is automatically both a submartingale and a supermartingale.

3.2. Martingales and Martingale Difference Sequences. The most basic examples of martin-
gales are sums of independent, mean zero random variables. Let Y0,Y1, . . . be a sequence of
independent, identically distributed random variables such that EYn = 0. Then the sequence of
partial sums

(15) Xn =
n∑

j=1
Y j
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is a martingale relative to the sequence 0,Y1,Y2, . . . (that is, relative to the natural filtration gen-
erated by the variables Yn). This is easily verified, using the linearity and stability properties and
the independence law for conditional expectation:

E(Xn+1 |Fn) = E(Xn +Yn+1 |Fn)

= E(Xn |Fn)+E(Yn+1 |Fn)

= Xn +EYn+1

= Xn .

The importance of martingales in modern probability stems at least in part from the fact that
most of the essential properties of sums of independent, identically distributed random vari-
ables are inherited (with minor modification) by martingales: As you will learn, there are ver-
sions of the SLLN, the Central Limit Theorem, the Wald indentities, and the Chebyshev, Markov,
and Kolmogorov inequalities for martingales. To get some appreciation of why this might be so,
consider the decomposition of a martingale {Xn} as a partial sum process:

(16) Xn = X0 +
n∑

j=1
ξ j where ξ j = X j −X j−1.

Proposition 1. The martingale difference sequence {ξn} has the following properties: (a) the
random variable ξn is a function of Fn ; and (b) for every n ≥ 0,

(17) E(ξn+1 |Fn) = 0.

Proof. Assertion (b) is a three-line calculation using the properties of conditional expectation
and the definition of a martingale. �

Corollary 1. Let {Xn} be a martingale relative to {Yn}, with martingale difference sequence {ξn}.
Then for every n ≥ 0,

(18) E Xn = E X0.

Moreover, if X0 = 0 and E X 2
n <∞ then the random variables ξ j are uncorrelated, and so

(19) E X 2
n =

n∑
j=1

Eξ2
j .

Proof. The first property follows almost trivially from Proposition 1 and the Expectation Law for
conditional expectation, as these together imply that Eξn = 0 for each n. Summing and using
the linearity of ordinary expectation, one obtains (18).

The second property is only slightly more difficult: First, observe that each of the terms ξ j has
finite variance, because it is the difference of two random variables with finite second moments.
(That E X 2

j <∞ follows from the hypothesis that E X 2
n <∞, together with the Tower Property.)

Consequently, all of the products ξiξ j have finite first moments, by the Cauchy-Schwartz in-
equality. Next, if j ≤ k ≤ n then ξ j is measurable relative to F j ; hence, by Properties (1), (4), (6),
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and (7) of conditional expectation, if j ≤ k ≤ n then

Eξ jξk+1 = EE(ξ jξk+1 |Y1,Y2, . . . ,Yk )

= Eξ j Eξk+1 |Y1,Y2, . . . ,Yk )

= E(ξ j ·0) = 0.

The variance of Xn may now be calculated in exactly the same manner as for sums of indepen-
dent random variables with mean zero:

E X 2
n = E(

n∑
j=1

ξ j )2

= E
n∑

j=1

n∑
k=1

ξ jξk

=
n∑

j=1

n∑
k=1

Eξ jξk

=
n∑

j=1
Eξ2

j +2
∑ ∑

j<k
Eξ jξk

=
n∑

j=1
Eξ2

j +0.

�

3.3. Some Examples of Martingales.

3.3.1. Paul Lévy’s Martingales. Let X be any integrable random variable. Then the sequence Xn

defined by Xn = E(X |Fn) is a martingale, by the Tower Property of conditional expectation.

3.3.2. Random Walk Martingales. Let Y0,Y1, . . . be a sequence of independent, identically dis-
tributed random variables such that EYn = 0. Then the sequence Xn =∑n

j=1 Y j is a martingale,
as we have seen.

3.3.3. Second Moment Martingales. Once again let Y0,Y1, . . . be a sequence of independent,
identically distributed random variables such that EYn = 0 and EY 2

n = σ2 < ∞. Then the se-
quence

(20)

(
n∑

j=1
Y j

)2

−σ2n

is a martingale (again relative to the sequence 0,Y1,Y2, . . . ). This is also easy to check.
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3.3.4. Likelihood Ratio Martingales: Bernoulli Case. Let X0, X1, . . . be a sequence of indepen-
dent, identically distributed Bernoulli-p random variables, and let Sn = ∑n

j=1 X j . Note that Sn

has the binomial-(n, p) distribution. Define

(21) Zn =
(

q

p

)2Sn−n

.

Then Z0, Z1, . . . is a martingale relative to the usual sequence. Once again, this is easy to check.
The martingale {Zn}n≥0 is quite useful in certain random walk problems, as we have already
seen.

3.3.5. Likelihood Ratio Martingales in General. Let X0, X1, . . . be independent, identically dis-
tributed random variables whose moment generating function ϕ(θ) = EeθXi is finite for some
value θ 6= 0. Define

(22) Zn = Zn(θ) =
n∏

j=1

eθX j

ϕ(θ)
= eθSn

ϕ(θ)n
.

Then Zn is a martingale. (It is called a likelihood ratio martingale because the random variable
Zn is the likelihood ratio dPθ/dP0 based on the sample X1, X2, . . . , Xn for probability measures
Pθ and P0 in a certain exponential family.)

3.3.6. Galton-Watson Martingales. Let Z0 = 1, Z1, Z2, . . . be a Galton-Watson process whose off-
spring distribution has mean µ> 0. Denote by ϕ(s) = E sZ1 the probability generating function
of the offspring distribution, and by ζ the smallest nonnegative root of the equation ϕ(ζ) = ζ.

Proposition 2. Each of the following is a nonnegative martingale:

Mn := Zn/µn ; and

Wn := ζZn .

Proof. Homework. �

3.3.7. Polya Urn. In the traditional Polya urn model, an urn is seeded with R0 = r ≥ 1 red balls
and B0 = b ≥ 1 black balls. At each step n = 1,2, . . . , a ball is drawn at random from the urn and
then returned along with a new ball of the same color. Let Rn and Bn be the numbers of red
and black balls after n steps, and let Θn = Rn/(Rn+Bn ) be the fraction of red balls. Then Θn is a
martingale relatve to the natural filtration.

3.3.8. Harmonic Functions and Markov Chains. Yes, surely enough, martingales also arise in
connection with Markov chains; in fact, one of Doob’s motivations in inventing them was to
connect the world of potential theory for Markov processes with the classical theory of sums
of independent random variables.3 Let Y0,Y0,Y1, . . . be a Markov chain on a denumerable state
space Y with transition probability matrix P. A real-valued function h : Y → R is called har-
monic for the transition probability matrix P if

(23) Ph = h,

3See his 800-page book Classical Potential Theory and its Probabilistic Counterpart for more on this.
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equivalently, if for every x ∈Y ,

(24) h(x) = ∑
y∈Y

p(x, y)h(y) = E xh(Y1).

Here E x denotes the expectation corresponding to the probability measure P x under which
P x{Y0 = x} = 1. Notice the similarity between equation (24) and the equation for the stationary
distribution – one is just the transpose of the other.

Proposition 3. If h is harmonic for the transition probability matrix P then for every starting
state x ∈Y the sequence h(Yn) is a martingale under the probability measure P x .

Proof. This is once again nothing more than a routine calculation. The key is the Markov prop-
erty, which allows us to rewrite any conditional expectation on Y0,Fn as a conditional expecta-
tion on Yn . Thus,

E(h(Yn+1) |Y0,Fn) = E(h(Yn+1) |Yn)

= ∑
y∈Y

h(y)p(Yn , y)

= h(Yn).

�

3.3.9. Submartingales from Martingales. Let {Xn}n≥0 be a martingale relative to the sequence
Y0,Y1, . . . . Let ϕ : R→ R be a convex function such that Eϕ(Xn) <∞ for each n ≥ 0. Then the
sequence {Zn}n≥0 defined by

(25) Zn =ϕ(Xn)

is a submartingale. This is a consequence of the Jensen inequality and the martingale property
of {Xn}n≥0:

E(Zn+1|Y0,Y1, . . . ,Yn) = E(ϕ(Xn+1)|Y0,Y1, . . . ,Yn)

≥ϕ(E(Xn+1|Y0,Y1, . . . ,Yn)

=ϕ(Xn) = Zn

Useful special cases: (a) ϕ(x) = x2, and (b) ϕ(x) = exp{θx}.

4. MARTINGALE AND SUBMARTINGALE TRANSFORMS

According to the Merriam-Webster Collegiate Dictionary, a martingale is

any of several systems of betting in which a player increases the stake usually by
doubling each time a bet is lost.

The use of the term in the theory of probability derives from the connection with fair games or
fair bets; and the importance of the theoretical construct in the world of finance also derives
from the connection with fair bets. Seen in this light, the notion of a martingale transform,
which we are about to introduce, becomes most natural. Informally, a martingale transform is
nothing more than a system of placing bets on a fair game.
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4.1. Martingale Transforms. A formal definition of a martingale transform requires two aux-
iliary notions: martingale differences and predictable sequences. Let X0, X1, . . . be a martingale
relative to another sequence Y0,Y1, . . . (or to a filtration {Fn}n≥0). For n = 1,2, . . . , define

(26) ξn = Xn −Xn−1;

to be the martingale difference sequence associated with the martingale Xn .
A predictable sequence Z1, Z2, . . . relative to the filtration Fn is a sequence of random vari-

ables such that for each n = 1,2, . . . the random variable Zn is measurable relative to Fn−1. In
gambling (and financial) contexts, Zn might represent the size (say, in dollars) of a bet paced on
the nth play of a game, while ξn represents the (random) payoff of the nth play per dollar bet.
The requirement that the sequence Zn be predictable in such contexts is merely an assertion
that the gambler not be clairvoyant.

Definition 3. Let X0, X1, . . . be a martingale relative to Fn and let ξn = Xn − Xn−1 be the as-
sociated martingale difference sequence. Let Z0, Z1, . . . be a predictable sequence. Then the
martingale transform {(Z ·X )n}n≥0 is defined by

(27) (Z ·X )n = Z0X0 +
n∑

k=1
Zkξk .

Example: The St. Petersburg Game. In this game, a referee tosses a fair coin repeatedly, with
results ξ1,ξ2, . . . , where ξn = +1 if the nth toss is a Head and ξn = −1 if the nth toss is a Tail.
Before each toss, a gambler is allowed to place a wager of size Wn (in roubles) on the outcome
of the next toss. The size of the wager Wn may depend on the observed tosses ξ1,ξ2, . . . ,ξn−1, but
not on ξn (or on any of the future tosses); thus, the sequence {Wn}n≥1 is predictable relative to
{ξn}n≥1. If the nth toss is a Head, the gambler nets +Wn , but if the nth toss is a Tail, the gambler
loses Wn . Thus, the net winnings Sn after n tosses is the martingale transform

Sn = (W ·X )n =
n∑

k=1
Wkξk ,

where Xn = ξ1 +ξ2 +·· ·+ξn . �

The most important fact about martingale transforms is that they are martingales in their own
right, as the next proposition asserts:

Proposition 4. Assume that the predictable sequence {Zn}n≥0 consists of bounded random vari-
ables. Then the martingale transform {(Z ·X )n}n≥0 is itself a martingale relative to {Yn}n≥0.

Proof. This is a simple exercise in the use of the linearity and stability properties of conditional
expectation:

E((Z ·X )n+1 |Fn) = (Z ·X )n +E(Zn+1ξn+1 |Fn)

= (Z ·X )n +Zn+1E(ξn+1 |Fn)

= (Z ·X )n ,

the last equation because {ξn}n≥1 is a martingale difference sequence relative to {Yn}n≥0. �

11



4.2. Submartingale Transforms. Submartingales and supermartingales may also be transformed,
using equation (27), but the resulting sequences will not necessarily be sub- or super-martingales
unless the predictable sequence {Zn}n≥0 consists of nonnegative random variables.

Definition 4. Let X0, X1, . . . be a sub- (respectively, super-) martingale relative to Fn and let
ξn = Xn − Xn−1 be the associated sub- (super-) martingale difference sequence. Let Z0, Z1, . . .
be a predictable sequence consisting of bounded nonnegative random variables. Then the sub-
martingale transform (respectively, supermartingale transform) {(Z ·X )n}n≥0 is defined by

(28) (Z ·X )n = Z0X0 +
n∑

k=1
Zkξk .

Proposition 5. If the terms Zn of the predictable sequence are nonnegative and bounded, and if
{Xn}n≥0 is a submartingale, then the submartingale transform (Z · X )n is also a submartingale.
Moreover, if, for each n ≥ 0,

(29) 0 ≤ Zn ≤ 1,

then

(30) E(Z ·X )n ≤ E Xn .

Proof. To show that (Z ·X )n is a submartingale, it suffices to verify that the differences Zkξk con-
stitute a submartingale difference sequence. Since Zk is a predictable sequence, the differences
Zkξk are adapted to {Yk }k≥0, and

E(Zkξk |Fk−1) = Zk E(ξk |Fk−1).

Since ξk is a submartingale difference sequence, E(ξk |Fk−1) ≥ 0; and therefore, since 0 ≤ Zk ≤
1,

0 ≤ E(Zkξk |Fk−1) ≤ E(ξk |Fk−1).

Consequently, Zkξk is a submartingale difference sequence. Moreover, by taking expectations
in the last inequalities, we have

E(Zkξk ) ≤ Eξk ,

which implies (30). �

There is a similar result for supermartingales:

Proposition 6. If {Xn}n≥0 is a supermartingale, and if the terms Zn of the predictable sequence
are nonnegative and bounded, then {(Z · X )n}n≥0 is a supermartingale; and if inequality (29)
holds for each n ≥ 0 then

(31) E(Z ·X )n ≥ E Xn .

5. OPTIONAL STOPPING

The cornerstone of martingale theory is Doob’s Optional Sampling Theorem. This states,
roughly, that “stopping” a martingale at a random time τ does not alter the expected “payoff”,
provided the decision about when to stop is based solely on information available up to τ. Such
random times are called stopping times.4

4In some of the older literature, they are called Markov times or optional times.
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Definition 5. A stopping time relative to a filtration {Fn}n≥0 is a nonnegative integer-valued
random variable τ such that for each n the event {τ= n} ∈Fn .

Theorem 1. (Optional Sampling Theorem) Let {Xn}n∈Z+ be a martingale, submartingale , or su-
permartingale relative to a sequence {Yn}n≥0, and let τ be a stopping time. Then for any n ∈N,

E Xτ∧n = E X0 (martingales)

E Xτ∧n ≤ E X0 (supermartingales)

E Xτ∧n ≤ E Xn (submartingales)

Proof. The easiest proof is based on the fact that martingale (respectively, submartingale, su-
permartingale) transforms are martingales (respectively, submartingales, supermartingales).
The connection between transforms and the Optional Sampling Theorem is that the sequence
{Xτ∧n}n≥0 may be represented as a transform of the sequence {Xn}n≥0:

(32) Xτ∧n = (Z ·X )n

where

(33) Zn =
{

1 if τ≥ n, and

0 if τ< n.

The equation (32) is easy to verify. Note that Z0 = 1, since τ is nonnegative; consequently,

(Z ·X )n = X0 +
n∑

j=1
Z j (X j −X j−1)

= X0 +
τ∧n∑
j=1

(X j −X j−1)

= Xτ∧n ,

since the last sum telescopes.
In order that the sequence {(Z ·X )n}n≥0 be a martingale transform (respectively, sub- or super-

martingale transform) it must be the case that the sequence {Zn}n≥0 is predictable. This is where
the assumption that τ is a stopping time enters: Since τ is a stopping time, for each fixed m the
event that τ= m depends only on Fm . Hence, the event

{τ≥ n} = (∪n−1
m=0{τ= m}

)c

depends only on Fn−1. But this event is the same as the event that Zn = 1; this proves that Zn is
measurable relative to Fn−1, and so the sequence {Zn}n≥0 is predictable.

The first two assertions of the Optional Sampling Theorem now follow easily from Proposi-
tions 4 and 5, in view of the “Conservation of Expectation” properties of martingales and su-
permartingales. For instance, if {Xn}n≥0) is a martingale, then since martingale transforms are
themselves martingales, and since expectation is “preserved” for martingales,

E Xτ∧n = E(Z ·X )n = E(Z ·X )0 = E X0.
13



A similar argument establishes the corresponding result for supermartingales. Finally, the last
assertion, regarding the case where {Xn}n≥0 is a submartingale, follows from inequality (30),
since the terms Zn of the predictable sequence are between 0 and 1. �

6. MAXIMAL INEQUALITIES

The Optional Sampling Theorem has immediate implications concerning the pathwise be-
havior of martingales, submartingales, and supermartingales. The most elementary of these
concern the maxima of the sample paths, and so are called maximal inequalities.

Proposition 7. Let {Xn}n≥0 be a sub- or super-martingale relative to {Yn}n≥0, and for each n ≥ 0
define

Mn = max
0≤m≤n

Xm , and(34)

M∞ = sup
0≤m<∞

Xm = lim
n→∞Mn(35)

Then for any scalar α> 0 and any n ≥ 1,

P {Mn ≥α} ≤ E(Xn ∨0)/α if {Xn}n≥0 is a submartingale, and(36)

P {M∞ ≥α} ≤ E X0/α if {Xn}n≥0 is a nonnegative supermartingale.(37)

Proof. Assume first that {Xn}n≥0 is a submartingale. Without loss of generality, we may assume
that each Xn ≥ 0, because if not we may replace the original submartingale Xn by the larger
submartingale Xn ∨0. Define τ to be the smallest n ≥ 0 such that Xn ≥ α, or +∞ is there is no
such n. Then for any nonrandom n ≥ 0, the truncation τ∧n is a stopping time and so, by the
Optional Sampling Theorem,

E Xτ∧n ≤ E Xn .

But because the random variables Xm are nonnegative, and because Xτ∧n ≥α on the event that
τ≤ n,

E Xτ∧n ≥ E Xτ∧n1{τ≤ n}

≥ Eα1{τ≤ n}

=αP {τ≤ n}.

This proves the inequality (36).
The proof of inequality (37) is similar, but needs an additional limiting argument. First, for

any finite n ≥ 0, an argument parallel to that of the preceding paragraph shows that

P {Mn ≥α} ≤ E X0/α.

Now the random variables Mn are nondecreasing in n, and converge up to M∞, so for any ε> 0,
the event that M∞ ≥ α is contained in the event that Mn ≥ α− ε for some n. But by the last
displayed inequality and the monotone convergence theorem, the probability of this is no larger
than E X0/(α−ε). Since ε> 0 may be taken arbitrarily small, inequality (37) follows. �

Example: The St. Petersburg Game, Revisited. In Dostoevsky’s novel The Gambler, the hero
(?) is faced with the task of winning a certain amount of money at the roulette table, starting
with a fixed stake strictly less than the amount he wishes to take home from the casino. What
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strategy for allocating his stake will maximize his chance of reaching his objective? Here we
will consider an analogous problem for the somewhat simpler St. Petersburg game described
earlier. Suppose that the gambler starts with 100 roubles, and that he wishes to maximize his
chance of leaving with 200 roubles. There is a very simple strategy that gives him a .5 probability
of reaching his objective: stake all 100 roubles on the first coin toss, and quit the game after one
play. Is there a strategy that will give the gambler more than a .5 probability of reaching the
objective?

The answer is NO, and we may prove this by appealing to the Maximal Inequality (37) for
supermartingales. Let {Wn}n≥0 be any predictable sequence (recall that, for a non-clairvoyant
bettor, the sequence of wagers must be predictable). Then the gambler’s fortune after n plays
equals

Fn = 100+
n∑

k=1
Wkξk ,

where ξn is the martingale difference sequence of±1 valued random variables recording whether
the coin tosses are Heads or Tails. By Proposition 4, the sequence Fn is a martingale. Since each
Fn ≥ 0, the Maximal Inequality for nonnegative supermartingales applies, and we conclude that

P {sup
n≥0

Fn ≥ 200} ≤ E X0/200 = 1/2.

Exercise: What is an optimal strategy for maximizing the chance of coming away with at least
300 roubles?

7. UPCROSSINGS INEQUALITIES

The Maximal Inequalities limit the extent to which a submartingale or supermartingale may
deviate from it initial value. In particular, if Xn is a submartingale that is bounded in L1 then the
maximal inequality implies that sup Xn <∞ with probability one. The Upcrossings Inequalities,
which we shall discuss next, limit the extent to which a submartingale or supermartingale may
fluctuate around its initial value.

Fix a sequence Xn of real random variables. For any fixed constants α < β, define the up-
crossings count Nn((α,β]) to be the number of times that the finite sequence X0, X1, X2, . . . , Xn

crosses from the interval (−∞,α] to the interval (β,∞). Equivalently, define stopping times

σ0 := min{n ≥ 0 : Xn ≤α} τ1 := min{n ≥σ0 : Xn >β};(38)

σ1 := min{n ≥ τ1 : Xn ≤α} τ2 := min{n ≥σ1 : Xn >β};

· · ·
σm := min{n ≥ τm : Xn ≤α} τm+1 := min{n ≥σm : Xn >β};

then
Nn((α,β]) = max{m : τm ≤ n}.

Proposition 8. Let Xn be a submartingale relative to Yn . Then for any scalars α < β and all
nonnegative integers m,n,

(39) (β−α)E Nn((α,β]) ≤ E(Xn ∨0)+|α|.
Consequently, if supE Xn <∞, then E N∞((α,β]) <∞, and so the sequence {Xn}n≥0 makes only
finitely many upcrossings of any interval (α,β].
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Proof. The trick is similar to that used in the proof of the Maximal Inequalities: define an ap-
propriate submartingale transform and then use Proposition 5. We begin by making two sim-
plifications: First, it is enough to consider the special case α= 0, because the general case may
be reduced to this by replacing the original submartingale Xn by the submartingale X ′

n = Xn −α
(Note that this changes the expectation in the inequality by at most |α|.) Second, if α= 0, then
it is enough to consider the special case where Xn is a nonnegative submartingale, because if
Xn is not nonnegative, it may replaced by X ′′

n = Xn ∨0, as this does not change the number of
upcrossings of (0,β] or the value of E(Xn ∨0).

Thus, assume that α= 0 and that Xn ≥ 0. Use the stopping times σm ,τm defined above (with
α= 0) to define a predictable sequence Zn as follows:

Zn = 0 if n ≤σ0;

Zn = 1 ifσm < n ≤ τm ;

Zn = 0 if τm < n ≤σm .

(EXERCISE: Verify that this is a predictable sequence.) This sequence has alternating blocks of
0s and 1s (not necessarily all finite). Over any complete finite block of 1s, the increments ξk

must sum to at least β, because at the beginning of a block (some time σm) the value of X is 0,
and at the end (the next τm), the value is back above β. Furthermore, over any incomplete block
of 1s (even one which will never terminate!), the sum of the increments ξk will be ≥ 0, because
at the beginning σm of the block the value Xσm = 0 and Xn never goes below 0. Hence,

βNn(0,β] ≤
n∑

i=1
Ziξi = (Z ·X )n .

Therefore, by Proposition 5,

(β−α)E Nn(α,β] ≤ E(Z ·X )τ(Mn )

≤ E(Z ·X )n

≤ E Xn .

�

8. THE MARTINGALE CONVERGENCE THEOREM

8.1. Pointwise convergence.

Martingale Convergence Theorem . Let {Xn} be an L1−bounded submartingale relative to a
sequence {Yn}, that is, a submartingale such that supn E |Xn | <∞. Then with probability one the
limit

(40) lim
n→∞Xn := X∞

exists, is finite, and has finite first moment.

Proof. By the Upcrossings Inequality, for any interval (α,β] with rational endpoints the se-
quence {Xn}n≥0 can make only finitely many upcrossings of (α,β]. Equivalently, the probability
that {Xn} makes infinitely many upcrossings of (α,β] is zero. Since there are only countably
many intervals (α,β] with rational endpoints, and since the union of countably many events of
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probability zero is an event of probability zero, it follows that with probability one there is no
rational interval (α,β] such that Xn makes infinitely many upcrossings of (α,β].

Now if xn is a sequence of real numbers that makes only finitely many upcrossings of any
rational interval, then xn must converge to a finite or infinite limit (this is an easy exercise in
elementary real analysis). Thus, it follows that with probability one X∞ := limn→∞ Xn exists
(but may be ±∞). But Fatou’s Lemma implies that

E |X∞| ≤ liminf
n→∞ E |Xn | <∞,

and so the limit X∞ is finite with probability one. �

Corollary 2. Every nonnegative supermartingale converges almost surely.

Proof. If Xn is a nonnegative supermartingale, then −Xn is a nonpositive submartingale. More-
over, because Xn ≥ 0,

0 ≤ E |Xn | = E Xn ≤ E X0,

the latter because Xn is a supermartingale. Therefore −Xn is an L1−bounded submartingale, to
which the Martingale Convergence Theorem applies. �

8.2. L1 convergence and uniform integrability. The Martingale Convergence Theorem asserts,
among other things, that the limit X∞ has finite first moment. However, it is not necessarily the
case that E |Xn −X∞|→ 0. Consider, for example, the martingale Xn that records your fortune at
time n when you play the St. Petersburg game with the “double-or-nothing” strategy on every
play. At the first time you toss a Tail, you will lose your entire fortune and have 0 forever after.
Since this is (almost) certain to happen eventually, Xn → 0 almost surely. But E Xn = 1 6= 0 for
every n!

Thus, not every L1−bounded martingale converges to its pointwise limit in L1. For which
martingales does L1 convergence occur?

Definition 6. A set of integrable random variables A = {Xλ}λ∈Λ is uniformly integrable if for
every δ> 0 there exists Cδ <∞ such that for all Xλ ∈ A,

(41) E |Xλ|1{|Xλ| ≥Cδ} ≤ δ.

Proposition 9. A set of integrable random variables A = {Xλ}λ∈Λ is uniformly integrable if and
only if for every δ> 0 there exists ε= ε(δ) > 0 such that for any event B satisfying P (B) < ε and all
Xλ ∈ A,

(42) E |Xλ|1B < δ.

Proposition 10. Any bounded subset of Lp , where p > 1, is uniformly integrable.

These are standard results in measure theory. The proofs are not difficult. Proposition 10 is
quite useful, as it provides a simple test for uniformly integrability.

Proposition 11. Let {Xn}n≥1 be a sequence of real random variables such that lim Xn = X exists
almost surely (or in probability). Then Xn → X in L1 if and only if the sequence {Xn}n≥1 is uni-
formly integrable. Furthermore, if the collection {Xn}n≥1 is uniformly integrable, then for every
σ−algebra G ,

(43) lim
n→∞E(Xn |G ) = E(X |G ) and lim

n→∞E(|Xn −X | |G ) = 0
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Proof. I’ll prove the useful direction, that uniform integrability implies L1−convergence and
convergence of conditional expectations. The converse is easier, and is left as an exercise. As-
sume that {Xn}n≥1 is uniformly integrable; then {Xn}n≥1 is bounded in L1 (because the inequal-
ity (41) implies that the L1 norms are all bounded by C1 +1). Hence, by Fatou, the limit X ∈ L1.
It follows (exercise: try using Proposition 9) that the collection {|Xn − X |}n≥1 is uniformly inte-
grable. Let Cδ < ∞ be the uniformity constants for this collection (as in inequality (41)). Fix
δ> 0, and set

Yn := |Xn −X |1{|Xn −X | ≤Cδ}.

These random variables are uniformly bounded (by Cδ), and converge to 0 by hypothesis. Con-
sequently, by the dominated convergence theorem, EYn → 0. Therefore,

limsupE |Xn −X | ≤ δ.

Since δ > 0 can be taken arbitrarily small, it follows that the lim sup is actually 0. This proves
that Xn → X in L1, which in turn implies (by the triangle inequality) that E Xn → E X . The as-
sertions regarding conditional expectations can be proved by similar arguments, using the DCT
for conditional expectation. �

Corollary 3. Let Xn be a uniformly integrable submartingale relative to a filtration {Fn}n≥1.
Then the sequence Xn is bounded in L1, and therefore has a pointwise limit X ; moreover, it con-
verges to its almost sure limit X in L1. If Xn is a martingale, then it is closed, in the following
sense:

(44) Xn = E(X |Fn).
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