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1 Definition of Conditional Expectation

1.1 General definition

Recall the definition of conditional probability associated with Bayes” Rule

P(AN B)

P(A|B) = B(5)

For a discrete random variable X we have
P(A) =) P(AX=x)=) PAX =2)P(X =)
and the resulting formula for conditional expectation

E(Y|X =2) — /QY(w)IP’(dw|X 1)
)

We would like to extend this to handle more general situations where densities
don’t exist or we want to condition on very “complicated” sets.

Definition 1 Given a random variable Y with E|Y'| < oo defined on a prob-
ability space (2, A,P) and some sub-o-field G C A we will define the con-
ditional expectation as the almost surely unique random variable E(Y|G)
which satisfies the following two conditions

1. E(Y|G) is G-measurable
2. E(YZ)=E(E(Y|G)Z) for all Z which are bounded and G-measurable
Remark: one could replace 2. in the previous definition with:

VG e G, E(Y1g)=EE(Y]9)1e).
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Proof of existence and unicity

e Existence Using linearity, we need only consider X > 0. Define a
measure Q on F by Q(A) = E[X1,4] for A € F. This is trivially
absolutely continuous with respect to Pz, the restriction of P to F.
Let E[X|F] be the Radon-Nikodym derivative of Q with respect to
P r. The Radon-Nikodym derivative is F-measurable by construction
and so provides the desired random variable.

e Unicity: If Y7, Y; are two F-measurable random variables with E[Y;14] =
E[Y514] for all A € F, then Y; = Y5, a.s., or conditional expectation is
unique up to a.s. equivalence.

For G = o(X) when X is a discrete variable, the space (2 is simply partitioned
into disjoint sets 2 = UG,,. Our definition for the discrete case gives

EY|o(X)) = (YIX)
Z IP) Yli ;n 1X=zn

B E(Y1g,) 1
- P(Gn) Gn

n

which is clearly G-measurable. In general for G = o(X):

Definition 2 Conditional expectation of Y given X

Let (Q, A, P) be a probability space, Y € LY(Q, A, P) and X another
random variable defined on (2, A, P). Define then E(Y | X) the conditional
expectation of Y given X as E(Y | 0(X)).

Proposition 3 Let (2, A) be a measurable space,
Y € LY, A, P)

and X another real-valued random variable defined on (2, A, P). As
X = f(Y), where f is measurable, real-valued function if and only if o(X) C
o(Y), we get that E(Y | X) is a measurable function of X.

Proposition 4 Let (2, A, P) be a probability space, and X and Y two in-
dependent random variables such that Y is P-integrable. Then E(Y | X) =
E(Y), P-almost surely.

Do not mix this notion with the following:
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1.2 Couples of random variables with p.d.f.

Proposition 5 Let (X,Y) be a couple of real-valued random variables with

p.d.f. fxy(z,y) wrt. the Lebesque measure on R?. Denote the respective

marginal p.d.f. of X and Y as fx(x) and fy(y). Consider fxy(x | y) =
fxv(zy)
Iy (y)

. Then almost surely

VCeB,P(XeC|Y=y)= /CfX|y(x | y)dx.
If besides X is P-integrable, then
EX|Y =y = /Rxfxy(x | y)dz.

If g : R* — R is a measurable function such that g(X,Y) is integrable, then

E((X,Y)|Y =y) = / o, 9) fxy (@ | y)da.

Remarks: As soon as fy(y) > 0, this defines the distribution of X given
that Y = y, described by p.d.f fx)y(x | y), which is nonnegative and of
integral 1.

If X and Y are independent, fx|y = fx and fy|x = fy. To make the link
with E[X]Y] would require to introduce the concept of regular conditional
distribution.

Equation (5) may be useful to compute the mathematical expectation of
g(X,Y) as

Blo(xX.v) = [

R

(/R 9(z,y) fxy (2 | y)d;p) Fy (y)dy.

2 Properties of Conditional Expectation

2.1 Conditional expectation

E(:|G) may be seen as an operator on random variables that transforms .A-
measurable variables into G-measurable ones.
Let us recall the basic properties of conditional expectation:
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1. E(:|G) is positive:
Y >0 — E(Y|G) > 0)

2. E(-|G) is linear:

E(aX +bY|G) = aE(X|G) + VE(Y|G)

3. E(-|G) is a projection:

E(E(X]9)|G) = E(X|9)

4. More generally, the “tower property”. If H C G then
E(E(X|G)[H) = E(X|H) = E(E(X|H) | G)

Proof: The right equality holds because E[X|H] is H- measurable,
hence G-measurable. To show the left equality, let A € H. Then since
A is also in G,

E[E[E[X|G]|H|14] = E[E[X|G]|14] = E[X14] = E[E[X|H]14].
Since both sides are H- measurable, the equality follows.
5. E(:|G) commutes with multiplication by G-measurable variables:
E(XY|G) = E(X|G)Y for E|XY| < co and Y Gmeasurable
Proof: If A € G, then for any B € G,
E[14E[X|G]1g] = E[E[X|G|1ans] = E[X14ns] = E[(14X)15].

Since 14E[XG] is G-measurable, this shows that the required equality
holds when Y = 1,4 and A € G. Using linearity and taking limits shows
that the equality holds whenever Y is G-measurable and X and XY are
integrable.
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6.

10.

E(-|G) respects monotone convergence:

0< X, TX = E(X,|G) T E(X|G)

If ¢ is convex (in particular if ¢(x) = 2?) and E|¢(X)| < oo then a
conditional form of Jensen’s inequality holds:

P(E(X]G) < E(¢(X)|9)

. E(:|G) is a continuous contraction of L? for p > 1:

IEXTG) ] < 11Xl

and
X, 5 X implies E(X,,|G) =5 E(X|G)

Repeated Conditioning. For Gy C G; C ..., G, = 0(UG;), and X € L?
with p > 1 then
E(X1Gn) == E(X|G0)

E(X|G,) + E(X|Gw)

Best approximation property:

Suppose that the random variable X is square-integrable, but not mea-
surable with respect to G. That is, the information in G does not
completely determine the values of X. The conditional expectation,
Y = E[X | G], has the property that it is the best approximation to
X among functions measurable with respect to Y, in the least squares
sense. That is, if Y is G-measurable, then

B [(7 - X)) 2 E[v -7

It thus realizes the orthogonal projection of X onto a convex closed
subset of a Hilbert space. This predicts the variance decomposition
theorem that we shall see in a further section.
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2.2 Conditional variance

Definition 6 Let X be a square-integrable, real-valued random variable de-
fined on a probability space (2, A, P), and let F be a sub-c-algebra of A.
Define the conditional variance of X given F (denoted by Var(X | F))
as the random variable E((X — E(X | F))* | F).

Define also the conditional variance of X given a real-valued random vari-
able Y defined on (2, A, P) (denoted by Var(X | Y)) as the random variable
E(X - E(X |Y))?]Y).

Proposition 7 Var(X | F) and Var(X | Y) are well- defined, almost surely
nonnegative and finite.

Var(X | F) = BE(X? | F) — BE(X | F)?,

and
Var(X | Y) = E(X2 |Y)— E(X | Y)2.

Proposition 8 Variance decomposition formula
Let (X,Y) be a couple of random wvariables defined on a probability space
(Q, A, P), such that X is square-integrable. Then

Var(X) = E(Var(X | Y)) + Var(E(X | Y)).

This may be very useful in non-life insurance to find the variance of a com-
pound distribution.

Proof:
o Var(X | Y) = E(X2|Y) — (B(X | Y))
e E[Var(X | Y)] = E[B(X? | V)] - B[(B(X | Y))?]
o E[E(X?|Y)] = E[X?.
o E[Var(X | Y)] = E[X?] - E[(E(X | Y))?].
o Var(E(X | V) = E[(E(X | V) — (E[B(X | V)]
o E[E(X|Y)] = E[X].
o Hence Var(E(X | Y)) = B[(E(X | Y))}] — (E[X])%.





