
1 DEFINITION OF CONDITIONAL EXPECTATION 4

1 Definition of Conditional Expectation

1.1 General definition

Recall the definition of conditional probability associated with Bayes’ Rule

P(A|B) ≡ P(A ∩B)

P(B)

For a discrete random variable X we have

P(A) =
∑
x

P(A,X = x) =
∑
x

P(A|X = x)P(X = x)

and the resulting formula for conditional expectation

E(Y |X = x) =

∫
Ω

Y (ω)P(dw|X = x)

=

∫
X=x

Y (ω)P(dw)

P(X = x)

=
E(Y 1(X=x))

P(X = x)

We would like to extend this to handle more general situations where densities
don’t exist or we want to condition on very “complicated” sets.

Definition 1 Given a random variable Y with E|Y | <∞ defined on a prob-
ability space (Ω,A,P) and some sub-σ-field G ⊂ A we will define the con-
ditional expectation as the almost surely unique random variable E(Y |G)
which satisfies the following two conditions

1. E(Y |G) is G-measurable

2. E(Y Z) = E(E(Y |G)Z) for all Z which are bounded and G-measurable

Remark: one could replace 2. in the previous definition with:

∀G ∈ G, E(Y 1G) = E(E(Y |G)1G).
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Proof of existence and unicity

• Existence Using linearity, we need only consider X ≥ 0. Define a
measure Q on F by Q(A) = E[X1A] for A ∈ F . This is trivially
absolutely continuous with respect to P|F , the restriction of P to F.
Let E[X|F ] be the Radon-Nikodym derivative of Q with respect to
P|F . The Radon-Nikodym derivative is F -measurable by construction
and so provides the desired random variable.

• Unicity: If Y1, Y2 are two F -measurable random variables with E[Y11A] =
E[Y21A] for all A ∈ F , then Y1 = Y2, a.s., or conditional expectation is
unique up to a.s. equivalence.

For G = σ(X) whenX is a discrete variable, the space Ω is simply partitioned
into disjoint sets Ω = tGn. Our definition for the discrete case gives

E(Y |σ(X)) = E(Y |X)

=
∑
n

E(Y 1X=xn)

P(X = xn)
1X=xn

=
∑
n

E(Y 1Gn)

P(Gn)
1Gn

which is clearly G-measurable. In general for G = σ(X):

Definition 2 Conditional expectation of Y given X
Let (Ω,A, P ) be a probability space, Y ∈ L1(Ω,A, P ) and X another

random variable defined on (Ω,A, P ). Define then E(Y | X) the conditional
expectation of Y given X as E(Y | σ(X)).

Proposition 3 Let (Ω,A) be a measurable space,

Y ∈ L1(Ω,A, P )

and X another real-valued random variable defined on (Ω,A, P ). As
X = f(Y ), where f is measurable, real-valued function if and only if σ(X) ⊂
σ(Y ), we get that E(Y | X) is a measurable function of X.

Proposition 4 Let (Ω,A, P ) be a probability space, and X and Y two in-
dependent random variables such that Y is P-integrable. Then E(Y | X) =
E(Y ), P -almost surely.

Do not mix this notion with the following:
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1.2 Couples of random variables with p.d.f.

Proposition 5 Let (X, Y ) be a couple of real-valued random variables with
p.d.f. fX,Y (x, y) w.r.t. the Lebesgue measure on R2. Denote the respective
marginal p.d.f. of X and Y as fX(x) and fY (y). Consider fX|Y (x | y) =
fX,Y (x,y)

fY (y)
. Then almost surely

∀C ∈ B, P (X ∈ C | Y = y) =

∫
C

fX|Y (x | y)dx.

If besides X is P -integrable, then

E(X | Y = y) =

∫
R
xfX|Y (x | y)dx.

If g : R2 → R is a measurable function such that g(X, Y ) is integrable, then

E(g(X,Y ) | Y = y) =

∫
R
g(x, y)fX|Y (x | y)dx.

Remarks: As soon as fY (y) > 0, this defines the distribution of X given
that Y = y, described by p.d.f fX|Y (x | y), which is nonnegative and of
integral 1.
If X and Y are independent, fX|Y = fX and fY |X = fY . To make the link
with E[X|Y ] would require to introduce the concept of regular conditional
distribution.
Equation (5) may be useful to compute the mathematical expectation of
g(X, Y ) as

E(g(X, Y )) =

∫
R

(∫
R
g(x, y)fX|Y (x | y)dx

)
fY (y)dy.

2 Properties of Conditional Expectation

2.1 Conditional expectation

E(·|G) may be seen as an operator on random variables that transforms A-
measurable variables into G-measurable ones.

Let us recall the basic properties of conditional expectation:
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1. E(·|G) is positive:
Y ≥ 0 → E(Y |G) ≥ 0)

2. E(·|G) is linear:

E(aX + bY |G) = aE(X|G) + bE(Y |G)

3. E(·|G) is a projection:

E(E(X|G)|G) = E(X|G)

4. More generally, the “tower property”. If H ⊂ G then

E(E(X|G)|H) = E(X|H) = E(E(X|H) | G)

Proof: The right equality holds because E[X|H] is H- measurable,
hence G-measurable. To show the left equality, let A ∈ H. Then since
A is also in G,

E[E[E[X|G]|H]1A] = E[E[X|G]1A] = E[X1A] = E[E[X|H]1A].

Since both sides are H- measurable, the equality follows.

5. E(·|G) commutes with multiplication by G-measurable variables:

E(XY |G) = E(X|G)Y for E|XY | <∞ and Y Gmeasurable

Proof: If A ∈ G, then for any B ∈ G,

E[1AE[X|G]1B] = E[E[X|G]1A∩B] = E[X1A∩B] = E[(1AX)1B].

Since 1AE[X|G] is G-measurable, this shows that the required equality
holds when Y = 1A and A ∈ G. Using linearity and taking limits shows
that the equality holds whenever Y is G-measurable and X and XY are
integrable.
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6. E(·|G) respects monotone convergence:

0 ≤ Xn ↑ X =⇒ E(Xn|G) ↑ E(X|G)

7. If φ is convex (in particular if φ(x) = x2) and E|φ(X)| < ∞ then a
conditional form of Jensen’s inequality holds:

φ(E(X|G) ≤ E(φ(X)|G)

8. E(·|G) is a continuous contraction of Lp for p ≥ 1:

‖E(X|G)‖p ≤ ‖X‖p

and
Xn

L2

−→ X implies E(Xn|G)
L2

−→ E(X|G)

9. Repeated Conditioning. For G0 ⊂ G1 ⊂ . . ., G∞ = σ(∪Gi), and X ∈ Lp

with p ≥ 1 then
E(X|Gn)

a.s.−→ E(X|G∞)

E(X|Gn)
Lp

−→ E(X|G∞)

10. Best approximation property:
Suppose that the random variable X is square-integrable, but not mea-
surable with respect to G. That is, the information in G does not
completely determine the values of X. The conditional expectation,
Y = E[X | G], has the property that it is the best approximation to
X among functions measurable with respect to Y , in the least squares
sense. That is, if Ỹ is G-measurable, then

E
[
(Ỹ −X)2

]
≥ E

[
(Y −X)2

]
.

It thus realizes the orthogonal projection of X onto a convex closed
subset of a Hilbert space. This predicts the variance decomposition
theorem that we shall see in a further section.
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2.2 Conditional variance

Definition 6 Let X be a square-integrable, real-valued random variable de-
fined on a probability space (Ω,A, P ), and let F be a sub-σ-algebra of A.
Define the conditional variance of X given F (denoted by Var(X | F))
as the random variable E((X − E(X | F))2 | F).
Define also the conditional variance of X given a real-valued random vari-
able Y defined on (Ω,A, P ) (denoted by Var(X | Y )) as the random variable
E((X − E(X | Y ))2 | Y ).

Proposition 7 Var(X | F) and Var(X | Y ) are well- defined, almost surely
nonnegative and finite.

Var(X | F) = E(X2 | F)− E(X | F)2,

and
Var(X | Y ) = E(X2 | Y )− E(X | Y )2.

Proposition 8 Variance decomposition formula
Let (X, Y ) be a couple of random variables defined on a probability space
(Ω,A, P ), such that X is square-integrable. Then

Var(X) = E(Var(X | Y )) + Var(E(X | Y )).

This may be very useful in non-life insurance to find the variance of a com-
pound distribution.

Proof:

• Var(X | Y ) = E(X2 | Y )− (E(X | Y ))2.

• E[Var(X | Y )] = E[E(X2 | Y )]− E[(E(X | Y ))2].

• E[E(X2 | Y )] = E[X2].

• E[Var(X | Y )] = E[X2]− E[(E(X | Y ))2].

• Var(E(X | Y )) = E[(E(X | Y ))2]− (E[E(X | Y )])2.

• E[E(X | Y )] = E[X].

• Hence Var(E(X | Y )) = E[(E(X | Y ))2]− (E[X])2.




