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Research Goals

Solve the optimal investment problem when the underlying
traded asset may default.

- Price defaultable bonds.

- Price dynamic default insurance.

Obtain explicit answers.

- Provide a PDE counterpart to the BSDE pricing literature.



Motivation

Say our goal is to price a claim whose payoff is contingent
upon survival of a reference entity.

: PayofF: (Z)T1T>5

- 0: default time of a firm S.

In practice, pricing is done under a risk neutral measure.
Two problems:

- What risk neutral measure?

- What is the underlying traded asset? What if the underlying is
the reference entity?



Motivation
Say our goal is to insure ourselves against losses from the
default of a stock in which we own a position.

We could enter into a CDS

- What if investment horizon does not match CDS maturity?

- What if we want dynamic protection?

Is there a fair price for dynamic protection taking into
account market incompleteness, and our preferences?



Contribution to the Literature

Optimal investment and indifference pricing with defaults
have been extensively studied.

- Primarily from the "BSDE" perspective, especially with respect
to pricing.

- We fill in a gap by considering Markovian factor models, using
PDE techniques, and focusing on indifference pricing.

- Amenable to computation and analysis.

The computation of dynamic default insurance has been
much less well-studied.



Contribution to the Literature

(selected) "PDE" articles

- [Lin06]: Merton model with default intensity v+ = (S;) under
a fixed risk neutral measure. Analytical formulas for European
option prices.

- [SZ07]: single stock factor model similar to ours. However,
investor does not lose money in stock upon default.

- [BBC16]: risk-sensitive control problem in factor model with
multiple securities, default state dependent intensities. Investor
does not lose money in stock upon default.

- [BC16]: optimal investment/consumption problem for power
utility in a factor model with multiple securities, default state
dependent intensities. Investor loses money upon default.



Contribution to the Literature

(selected) "BSDE" articles

- [Mor09, LQ11]: single stock and non-traded claim. Brownian
setting prior to default.

- [JP11, JKP13]: single/multiple stocks along with claim.
Multiple credit events which cause a jump in stock prices with
trading possible after jump. Brownian setting

- [MS17]: stock modeled as a pure-jump Levy process.
- [LQ15]: extension of [LQ11] to partial information models.

- [GN15, CGN15]: mean-variance hedging under default risk.



Model

Reduced form, "hybrid" intensity model: [SZ07].

X: underlying factor process

- dXy = b(X¢)dt + a(X¢)dW.
- W: d-dim B.M.. b, A := aa’ smooth, A locally elliptic.

- Solution to Martingale problem for L on E C RY where
- L= (1/2)Tr(AD?) + b'V
- E = U,LE, with E, bounded, E, 1, 0E, smooth.

One risky asset S (riskless asset set to 1)

- S defaults at the random time §. Prior to 4, S has
instantaneous returns, variances, correlations driven by X.



Model
Start at t > 0. X[ = x € E. Write X = X~

S = e (1= s+ (o) (X W, + (7/T=775) (X))

— dMq; s>t

- WP one-dim B.M. L of W.

S 8=inf{s>t: [Jy(X,)du=— Iog(U)},UJ_L w, we.

- Hs :=1g55; Ms = Hs — fSM

. G :=FWW° yFH, W, WO M are G local martingales.

-, 0,7, p smooth functions on E, v,0 >0, p/p < 1.



Optimal Investment Problem

Investment horizon: [t, T] for T > t.

M equivalent local martingale measures on Gr. M subset
with finite relative entropy w.r.t. PP.

A: acceptable (dollar) trading strategies 7.
- Wealth process W™ = w + [ 7,dS,/S.u-.

- Dollar position g lost at §.

e Aif W is a Q local martingale for all Q € M.



Optimal Investment Problem

Exponential investor: U(w) := —e™ ", w € R.
Investor

- Trades in S according to 7 € A.

- Owns a non-traded claim with time T payoff ¢(X7)17<s.

- ¢ smooth, bounded. Primarily care about ¢ =1,¢ =0.

For O initial wealth write W™ = W™ and define

u(t,x; ¢) := sup E [—efa(w¥+¢(XT)ld>T)} ;o (Xe=x)
TeA

G(t,x;¢) = —é log (—u(t, x; ¢)).



G(t,x;¢) = —Xlog (—u(t,x; ¢)): Certainty Equivalent

Heuristics using DPP suggest G should solve

2 2 2

— _ Yy A G viel g2 :
0=G+1G 2VGAVG+2a((J2 SVGap) + 55 - 6% 29G),
¢=G(T,)

+ 0(y): inverse of ye” and 0 := 0 (%eimc—%w'aﬁ).

If G is a classical solution, DPP suggests optimal strategy is

R = (s, X¥) for 7 = 1 (L — 2V G'ap — 0g).



Certainty Equivalent PDE

2 2 2
0=G +LG— %VG'AVG+ ‘2’— (( = gVG'ap) v g2 296) ;
(6% ag ag

o2 2

- This is a semi-linear degenerate parabolic PDE.

- Non-linearities arise due to market incompleteness.

- Luckily: 6(y) = log(y) — log(log(y)),y >> 0.
- PDE is quadratically growing in G,VG.

- Regarding solutions/verification:

- For general regions E, local ellipticity, verification is hard:
lack gradient estimates near OE.

- We must enforce some additional (global) condition.



The Main Assumption

Set ¢ := (pn — 7y)/o (market price of risk).
Today: assume "strictly incomplete" market absent default.

- The paper treats the "complete" case as well.

Main assumptions:

© supyeg p'p(x) < 1.
- For some € > 0 we have for each n

sup EX [e‘ffoT E(X“)zd”} = C(e,n) < oo.

XEEn
This assumption is MILD. Holds in virtually all models.
- E.g. X~ OU, CIR, p,0?, affine.



The Main Result

2 2 2
— R viel T (E_Yyg g2 :
0=Gi+LG—5VGAVG+ - ((02 VGap) + 5 -0} 20(;),

¢ = G(T’)

Theorem: assume super p'p(x) <1 and for some ¢ > 0:

- sup Ex { e o ¢ d“} = C(n) < o0, Vn.

Then

- The certainty equivalent G is a classical (C!?) solution.
- The optimal trading strategy is

R =R(s, XI) for £ =L (£ —2VG'ap— ).

XEEn

- The optimal martingale measure Q has density

L2 = o~ (WI=G(txi9)+15>:G(x.Xs10))



Application: Pricing for Defaultable Bonds

Investor owns g units notional: claim payoff gls- .
(per-unit, buyer’s) indifference price: p(t, x; q) solving
- u(t, x;0,0) = u(t,x; q, —qp(t, x; q)) = e*P(tx:9) y(t, x; q,0).
- u(t,x; ¢, w): utility for initial wealth w.
- Well known p does not depend on w.
Immediate result as G(t, x; q) = —(1/a)log(—u(t, x; q)):

- p(t,x;q) = %(G(t,x; q) — G(t,x;0)).



Application: Dynamic Default Insurance

Goal: find a fair price for dynamic protection against default.

- Approximation to CDS pricing valid for frequent contract
adjustments.

Motivation from [SZ07]: optimal investment/pricing but with
no loss at default.

- s not lost at default time §.

How is this possible? What contact has been entered into
which enables this?



Dynamic Default Insurance

Perspective: investor has two alternatives:

- A) Do not purchase protection. Lose 75 at 0. Indirect utility of
u(t, x).

- B) Purchase protection. Pay a (per-unit) cash flow rate of f,
where f is to-be-determined.

- Wealth dynamics:

WD = mslocs (1 —7)(Xs) — f5) ds
+ melocs ((op)(Xs)’dWs + (o1 p’p)(XS)dWSO) .

- Indirect utility

ud(t,x) = sup E {fefaw?d} :
TEAy



Dynamic Default Insurance

Gt x) = —é log (—u(t,%)):  G(t,x) = —é log (—u? (£, x)) .

Guess f; = f(t, X;). Find f so that PDEs for G, G? are the
same (both have terminal condition ¢).

0=G, +LG— gVG’AVG

o’ H / 2y 2
+2a<(02—vc ) +J2—ac—2ec>,

0=G¢+1GY - %V(Gd)’AVGd

L2 (e agery 2+2“Y(1 )
2a o? o a 2 e ’




Dynamic Default Insurance

Upon inspection, given a solution G to the first PDE, G will
solve the second PDE if f satisfies

2
fe —'u—O[VG’ap:i:\/(’u aVG’ap) — <9%+29(;—2Zeac).
o o

0?2 o2 o2 o

- Term inside square root is non-negative: real solutions.

- We choose the "-" solution.

- Lowest possible f since this is what the investor pays.

- Can also justify f_ by inspecting optimal strategies 7{: f, > 0
and 79 < 0 - not feasible.



Dynamic Default Insurance

We define the dynamic default insurance protection price

2
f = o (*‘zvc’a \/(l;aVG’ap> (9%;+29(; ”ea6>>.
g g g o2

Facts

- f < 4e™6+7) = AQ: the default intensity under the dual

~n

optimal measure Q.
- Equality only when # = 0.

- f > 0 when & > 0: intuitive. Pay for protection when long.

- f > 0 possible even when ## < 0, but f < 0 for # << 0.



Numerical Application

Application: X ~ CIR, affine market price of risk.

- dXe = k(0 — X¢)dt + E/XedW,.

- Prior to default
- dS./S, = pXedt + o/X; (det +/1- p2th0>.
- Default intensity: v+ = vX:.
Assume € R, 0,7 > 0and |p| < 1.

- Main assumption holds provided xf > £2/2.



Application: Defaultable Bond Pricing

Investor owns g units of a defaultable bond.

p(0, x; q) as a function of g,x for T = 1.

1
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- Physical default prob of 3% at x = 6% (long run mean).
- q = 1(dash), g = 3 (dot-dash), g =5 (dot), g = 10 (solid).



Application: Dynamic Default Insurance

(0, x) as a function of x for T = 1.
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) 7@ (dash), f (solid), v (dash).



THANK YOU!
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