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Uncertain Volatility Model (UVM)

Under the risk-neutral measure, the price process of the risky asset
satisfies the following stochastic di↵erential equation (SDE):

dX
t

= rX
t

dt + ↵
t

X
t

dW
t

,

where r is the constant risk-free rate, (W
t

) is a Brownian motion
and the volatility process (↵

t

) belongs to a family A of
progressively measurable and [�,�]-valued processes.
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Worst-case Scenario Price

”Uncertainty is the only certainty there is, and knowing how to live
with insecurity is the only security”. —John Paulos

When pricing a European derivative written on the risky asset with
maturity T and nonnegative payo↵ h(X

T

), the worst-case scenario
price at time t < T is given by

P(t,X
t

) := exp(�r(T � t)) ess sup↵2A E
t

[h(X
T

)].



Uncertain Volatility Model Main Result Proof of the Main Theorem Numerical Illustration Extension

Previous result

P(t,X
t

) solves the following Black-Scholes-Barenblatt equation:

@
t

P + r(x@
x

P✏ � P) + sup
↵2[�,�]

{1
2
↵2x2@2

xx

P} = 0,

P(T ) = h.

For convex h, P(t,X
t

) is its Black–Scholes price with
constant volatility �.

For concave h, P(t,X
t

) is its Black–Scholes price with
constant volatility �.

What if h is not strictly convex nor strictly concave?
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Previous result (Fouque-Ren SIFIN 2014)

For the general terminal payo↵ function, in a small volatility
interval [�,�+ ✏], the worst-case scenario price P✏(t,X

t

) solves the
following Black-Scholes-Barenblatt equation:

@
t

P✏ + r(x@
x

P✏ � P✏) + sup
↵2[�,�+✏]

{1
2
↵2x2@2

xx

P✏} = 0,

P✏(T ) = h.

Main result:

lim
✏#0

P✏ � (P
0

+ ✏P
1

)

✏
= 0.



Uncertain Volatility Model Main Result Proof of the Main Theorem Numerical Illustration Extension

Previous result (Fouque-Ren SIFIN 2014)

P
0

is the solution of the following Black-Scholes equation:

@
t

P
0

+ r(x@
x

P
0

� P
0

) +
1

2
�2x2@2

xx

P
0

= 0,

P
0

(T ) = h.

P
1

is the solution of the following equation:

@
t

P
1

+ r(x@
x

P
1

� P
1

) +
1

2
�2x2@2

xx

P
1

+ sup
g2[0,1]

g�x2@2

xx

P
0

= 0,

P
1

(T ) = 0.
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Problem and Di�culty

However, for contingent claims with longer maturities, it is no
longer consistent with observed volatility to assume that the
bounds are constant.
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Our Research

We propose that the uncertain volatility moves between two
stochastic bounds,

�
t

:= d
p

Z
t

 ↵
t

 �
t

:= u
p
Z
t

,

where u and d are two constants such that 0 < d < 1 < u, and Z
t

is the general three-parameter CIR process

dZ
t

= �(✓ � Z
t

)dt +
p
�
p
Z
t

dW Z

t

.

Denote ↵
t

:= q
t

p
Z
t

, then

d  q
t

 u.
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Convergence of X �

Reparameterize the SDE of the risky asset price process as

dX �
t

= rX �
t

dt + q
t

p
Z
t

X �
t

dW
t

.

When � = 0, note that the CIR process Z
t

is frozen at z , and then
the risky asset price process follows the dynamic

dX 0

t

= rX 0

t

dt + q
t

p
zX 0

t

dW
t

.

Both X �
t

and X 0

t

start at the same point x .

Proposition

Uniformly in (q·), E
(t,x ,z)(X

�
T

� X 0

T

)2  C
0

�
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Convergence of P�

We denote its smallest riskless selling price (worst case scenario) as

P�(t, x , z) := exp(�r(T � t)) ess sup
q.2[d ,u] E(t,x ,z)[h(X

�
T

)].

When � = 0,

P
0

(t, x , z) = exp(�r(T � t)) ess sup
q.2[d ,u] E(t,x ,z)[h(X

0

T

)].

Notice that P
0

(t,X
t

, z) corresponds to P(t,X
t

) with constant
volatility bounds given by d

p
z and u

p
z .

Theorem

1. P�(t, ·, ·) as a family of functions of x and z indexed by �,
uniformly converge to P

0

(t, ·, ·) in (q·) with rate
p
�.

2. @2

xx

P�(t, ·, ·) ...
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Pricing Nonlinear PDE

The generalized BSB nonlinear equation:

@
t

P� + r(x@
x

P� � P�) + sup
q2[d ,u]

{1
2
q2zx2@2

xx

P� +
p
�(q⇢zx@2

xz

P�)}

+�(
1

2
z@2

zz

P� + (✓ � z)@
z

P�) = 0,

P�(T , x , z) = h(x).

Expansion:
P� = P

0

+
p
�P

1

+ �P
2

+ · · ·

Identify P
0

and P
1

Control the error term
E �(t, x , z) := P�(t, x , z)� P

0

(t, x , z)�p
�P

1

(t, x , z)
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Identify P0

Inserting this expansion into the main BSB equation, the leading
order term P

0

is the solution to

@
t

P
0

+ sup
q2[d ,u]

{1
2
q2zx2@2

xx

P
0

} = 0,

P
0

(T , x , z) = h(x).

The optimal control for P
0

is given by

q⇤,0(t, x , z) =

⇢
u, @2

xx

P
0

� 0
d , @2

xx

P
0

< 0
.
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Optimizers

Lemma

For � su�ciently small and for x /2 S0

t,z (the zero set of @2

xx

P
0

), the

optimal control in the nonlinear PDE for P�, denoted as

q⇤,�(t, x , z) := arg max
q2[d ,u]

{1
2
q2zx2@2

xx

P� +
p
�(q⇢zx@2

xz

P�)},

is given by

q⇤,�(t, x , z) =

⇢
u, @2

xx

P� � 0
d , @2

xx

P� < 0
.
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Optimizers

Figure: If @2

xx

P� > 0, whether q̂⇤,� is positive or negative, with the
requirement q 2 [d , u], q⇤,� = u; otherwise q⇤,� = d .
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Identify P1

We insert the expansion into the main BSB equation and collect
terms in successive powers of

p
�. With the result that q⇤,� ! q⇤,0

as � ! 0, the first order correction term P
1

is chosen as the
solution to the linear equation:

@
t

P
1

+
1

2
(q⇤,0)2zx2@2

xx

P
1

+ q⇤,0⇢zx@2

xz

P
0

= 0,

P
1

(T , x , z) = 0,

where q⇤,0 is the optimal control for P
0

.
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Main Theorem

Theorem (Main Theorem)

The residual function E �(t, x , z) defined by

E �(t, x , z) := P�(t, x , z)� P
0

(t, x , z)�
p
�P

1

(t, x , z)

is of order O(�). In other words, 8(t, x , z) 2 [0,T ]⇥ R+ ⇥ R+,
there exists a positive constant C, such that |E �(t, x , z)|  C�,
where C may depend on (t, x , z) but not on �.
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Operators

L�(q) : = @
t

+
1

2
q2zx2@2

xx

+
p
�q⇢zx@2

xz

+ �(
1

2
z@2

zz

+ (✓ � z)@
z

)

= L
0

(q) +
p
�L

1

(q) + �L
2

,

with

L
0

(q) := @
t

+
1

2
q2zx2@2

xx

,

L
1

(q) := q⇢zx@2

xz

,

L
2

:=
1

2
z@2

zz

+ (✓ � z)@
z

.
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Apply L�(q⇤,�) to the error term

L�(q⇤,�)E �

=L�(q⇤,�)(P� � P
0

�
p
�P

1

)

=� L
BS

(q⇤,0)P
0| {z }

=0, PDE for P

0

.

�(L
BS

(q⇤,�)� L
BS

(q⇤,0))P
0

�
p
�

"
L
1

(q⇤,0)P
0

+ L
BS

(q⇤,0)P
1| {z }

=0, PDE for P

1

.

+ (L
1

(q⇤,�)� L
1

(q⇤,0))P
0

+ (L
BS

(q⇤,�)� L
BS

(q⇤,0))P
1

#

� �
h
L
1

(q⇤,�)P
1

+ L
CIR

P
0

i
� �

3

2 (L
CIR

P
1

)
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Probabilistic Representation by Feynman-Kac

Given terminal condition

E �(T , x , z) = 0

together with the existence and uniqueness result of X ⇤,�
t

, we have
the following probabilistic representation for E �(t, x , z) by
Feynman-Kac formula:

E �(t, x , z) = I
0

+ �
1

2 I
1

+ �I
2

+ �
3

2 I
3

,



Uncertain Volatility Model Main Result Proof of the Main Theorem Numerical Illustration Extension

I
0

:= E
(t,x ,z)

"Z
T

t

1

2

⇣
(q⇤,�)2 � (q⇤,0)2

⌘
Z
s

(X ⇤,�
s

)2@2

xx

P
0

(s,X ⇤,�
s

,Z
s

)ds

#
,

I
1

:= E
(t,x ,z)

"Z
T

t

⇢(q⇤,� � q⇤,0)Z
s

X ⇤,�
s

@2

xz

P
0

(s,X ⇤,�
s

,Z
s

)

+
1

2

⇣
(q⇤,�)2 � (q⇤,0)2

⌘
Z
s

(X ⇤,�
s

)2@2

xx

P
1

(s,X ⇤,�
s

,Z
s

)ds

#
,

I
2

:= E
(t,x ,z)

"Z
T

t

⇢(q⇤,�)Z
s

X ⇤,�
s

@2

xz

P
1

(s,X ⇤,�
s

,Z
s

)

+
1

2
Z
s

@2

zz

P
0

(s,X ⇤,�
s

,Z
s

) + (✓ � Z
s

)@
z

P
0

(s,X ⇤,�
s

,Z
s

)ds

#
,

I
3

:= E
(t,x ,z)

"Z
T

t

1

2
Z
s

@2

zz

P
1

(s,X ⇤,�
s

,Z
s

) + (✓ � Z
s

)@
z

P
1

(s,X ⇤,�
s

,Z
s

)ds

#
.
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Next observe that,

q⇤,� � q⇤,0 = (u � d)( {@2

xx

P

��0} � {@2

xx

P

0

�0}).

and similarly,

(q⇤,�)2 � (q⇤,0)2 = (u2 � d2)( {@2

xx

P

��0} � {@2

xx

P

0

�0}).

Note that {q⇤,� 6= q⇤,0} = A�
t,z , the set where @2

xx

P� and @2

xx

P
0

take di↵erent signs

A�
t,z :={x = x(t, z)|@2

xx

P�(t, x , z) > 0, @2

xx

P
0

(t, x , z) < 0}
[ {x = x(t, z)|@2

xx

P�(t, x , z) < 0, @2

xx

P
0

(t, x , z) > 0}.
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Control of the term I0

Theorem

There exists a positive constant M
0

, such that

|I
0

|  M
0

�

where M
0

may depend on (t, x , z) but not on �. That is, I
0

is of
order O(�).

Sketch of Proof: There exists a constant C
0

such that

|@2

xx

P
0

(s,X ⇤,�
s

,Z
s

)|  C
0

p
�, for X ⇤,�

s

2 A�
s,z .
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Control of the term I0

Then, since 0 < d  q⇤,�, q⇤,0  u, we have

|I
0

|  E
(t,x ,z)

"Z
T

t

1

2
|(q⇤,�)2 � (q⇤,0)2|Z

s

(X ⇤,�
s

)2|@2

xx

P
0

(s,X ⇤,�
s

,Z
s

)|ds
#

 u2

2d2

C
0

p
� E

(t,x ,z)

Z
T

t

{X⇤,�
s

2A�
s,z}

(q⇤,�)2Z
s

(X ⇤,�
s

)2ds

�
.

In order to show that I
0

is of order O(�), it su�ces to show that
there exists a constant C

1

such that

E
(t,x ,z)

Z
T

t

{X⇤,�
s

2A�
s,z}

�2

s

ds

�
 C

1

p
�,

where �
s

:= q⇤,�
p
Z
s

X ⇤,�
s

and dX ⇤,�
s

= �
s

dW
s

.



Uncertain Volatility Model Main Result Proof of the Main Theorem Numerical Illustration Extension

Control of the term I0

Define the stopping time

⌧(v) := inf{s > t; hX ⇤,�i
s

> v},

where

hX ⇤,�i
s

=

Z
s

t

�2(X ⇤,�
u

)du.

Then according to Theorem of time-change for martingales, we
know that X ⇤,�

⌧(v) = B
v

is a standard one-dimensional Brownian

motion on (⌦,FB

v

,QB).

Z ⌧(v)

t

�2(X ⇤,�
s

)ds = v , ⌧�1(T ) =

Z
T

t

�2(X ⇤,�
s

)ds.
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Symmetric European butterfly spread

.
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.

Figure: The blue curve represents the usual uncertain volatility model
price P

0

with two deterministic bounds 0.15 and 0.25, the red curve
marked with ”- -” represents the BS prices with � = 0.25, the green
curve marked with ’-.’ represents the BS prices with � = 0.15.
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.
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.

Figure: Error for di↵erent values of �
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.

Figure: The red curve marked with ”- -” represents @2

xx

P�; the blue curve
represents @2

xx

P
0

.
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New Trend in Financial Mathematics

Researchers are explorers and exploring never ends.

Fractional Brownian motion (fBM), B. Mandelbrot and J. Van
Ness, 1968.
Fractional Brownian motions and its applications.

Fractional stochastic volatility (FSV) model, F. Comte and E.
Renault, 1998.
Model log-volatility using fBM with Hurst parameter H > 1

2

.

Rough fractional stochastic volatility (RFSV) model, J.
Gatheral, T. Jaisson and M. Rosenbaum, 2014.

H < 1

2

Remarkably consistent with financial time series data
Improved forecasts of realized volatility

Rough Uncertain Volatility model? 2017?
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Thank you!
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