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Introduction

Motivations

To minimize the risk due to model uncertainty

(error in model estimation or model misspecification)

To solve control problems when the true law of the underlying model

is unknown and belongs to a family of probability laws

Existing robust methodologies may be overly conservative when

applied to unknown system

Available robust frameworks do not consider reduction of uncertainty
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Introduction

Main Goals

We propose an adaptive robust control methodology for solving

a discrete time Markovian control problem subject to Knightian

uncertainty

The methodology can be applied to any Markov decision process

under model uncertainty, and in particular, to some financial

problems

Build the theory of recursive construction of confidence regions
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Introduction

Preliminaries

(⌦,F) - measurable space

T - finite time horizon

T = {0,1, . . . , T} and T ′ = {0,1, . . . , T − 1}
X = {X

t

, t ∈ T } - observed process

F = {F
t

, t ∈ T } - the natural filtration of X

{P
✓

, ✓ ∈⇥ ⊂ Rd} - set of laws of X
⇥ ⊂ Rd - parameter space. Model uncertainty if ⇥ ≠ {✓∗}.
P
✓

∗ - (unknown) true law of X
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Introduction

General Stochastic Control Problem

inf
'∈AE✓∗L(X,'),

where A is the set of admissible control processes (some F–adapted
processes ' = {'

t

, t ∈ T ′}); L is a measurable functional (loss function,

utility function, etc).

Example. Find a self-financing portfolio that maximizes the expected utility of
the terminal wealth

sup
'∈AE✓∗u(V '

T )),
where V '

T is the wealth at time T using strategy ', u is an utility function, A is

the set of s.f. strategies.

Since the true parameter ✓∗ ∈⇥ is unknown, the question is how to

handle the stochastic control problem subject to this type of model

uncertainty.
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Classical Approaches

Classical Approaches

Robust control problem:

inf
'∈A sup

✓∈⇥E
✓

(L(X,')).

Select the best strategy ' over the worst possible model.

Başar and Bernhard (1995), Hansen et al. (2006), Hansen and

Sargent (2008).

If the ‘sup model’ is far from the true model, the solution could be

bad.
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Classical Approaches

Strong robust control problem:

inf
'∈A sup

Q∈Q', K

EQ(L(S,')).

 
K

is the set of strategies chosen by Knightian adversary or the

nature.

Q', K is a set of probability measures on canonical space that

represents all possible models resulting from ' and  
K

.

Bayraktar, Cosso and Pham (2014), Ŝırbu (2014).
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Classical Approaches

Bayesian adaptive control problem:

inf
'∈A�⇥E

✓

(L(X,'))⌫0(d✓).

The parameter ✓ is modeled as a random variable taking values in ⇥

with a prior distribution ⌫0.

Kumar, Varaiya (1986), Runggaldier et al. (2002),

Corsi et al. (2007).

Note that

inf
'∈A sup

✓∈⇥E
✓

(L(X,'))) = inf
'∈A sup

⌫0∈P(⇥)�⇥E
✓

(L(X,'))⌫0(d✓).
No reduction of uncertainty about ✓.
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Classical Approaches

Adaptive control problem:

For each ✓ ∈⇥ solve

inf
'∈AE✓ (L(X,')) .

Let '✓ be a corresponding optimal control.

At each time t, compute an F
t

-measurable point estimate ✓̂
t

of ✓∗.
Apply the control value '✓̂t

t

.

Known to have poor performance for finite time horizon problems

Kumar and Varaiya (1986), Chen and Guo (1991)
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Classical Approaches

The classical robust control problem does not involve any reduction

of uncertainty about ✓∗; the parameter space is not “updated” with

incoming information about the signal process X.

Same applies to other classical approaches.

Incorporating “learning” into the robust control paradigm appears

like a good idea.

Anderson, Hansen, Sargent (2003) state:

“We see three important extensions to our current investigation. Like

builders of rational expectations models, we have side-stepped the issue of

how decision-makers select an approximating model. ... Just as we have

not formally modelled how agents learned the approximating model,

neither have we formally justified why they do not bother to learn about

potentially complicated misspecifications of that model. Incorporating

forms of learning would be an important extension of our work.”
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Adaptive Robust Control

We propose Adaptive Robust Control Methodology

inf
'∈A sup

Q∈Q', 
h0

EQ (L(X,')) ,

where Q', 
h0

is a family of probability measures constructed in a way that

allows for dynamic reduction of uncertainty about ✓∗.
We chose the family Q', 

h0
in terms of confidence regions for the

parameter ✓∗.
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Adaptive Robust Control

Without uncertainty
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Adaptive Robust Control

Robust
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Adaptive Robust Control

Strong robust
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Adaptive Robust Control

Adaptive Robust
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Adaptive Robust Control

We assume that the observed state process X follows the dynamics

X0 = x0,
X

t+1 = f(Xt

,'
t

, Z
t+1), t ∈ T ,

where Z = {Z
t

}
t∈T ′ is an Rm-valued random sequence that is

F–adapted,
observed,

i.i.d. under P
✓

, ✓ ∈⇥ ⊂ Rd,

the law of Z1 is unknown but it belongs to a family of parameterized

distributions {P
✓

, ✓ ∈⇥}.
Example: Zt is the excess return on risk assets in the optimal portfolio selection

problem.
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Adaptive Robust Control Recurrent Confidence Regions

The adaptive robust control methodology relies essentially on recursive

construction of confidence regions. In Bielecki, C., Chen (2016), for

time-homogenous Markov chains Z, we showed that:

A point estimator ✓̂
t

of ✓∗ can be computed recursively

✓̂0 = ✓0,
✓̂
t+1 = R(t, ✓̂t, Zt+1),

where R(t, c, z) is a deterministic measurable function.

An approximate 1 − ↵-confidence region ⇥
t

of ✓∗ can be

constructed by a deterministic rule:

⇥
t

= ⌧
↵

(t, ✓̂
t

)
where ⌧

↵

(t, ⋅) ∶ Rd → 2⇥ is a is a deterministic set valued function,

P
✓

∗(✓∗ ∈⇥
t

) ≈ 1 − ↵, and lim
t→∞⇥t

= {✓∗}.
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Adaptive Robust Control

We consider the augmented state process

Y
t

∶= (X
t

, ✓̂
t

), t ∈ T ,
with state space E

Y

∶= Rn ×Rd, and dynamics

Y
t+1 = T(t, Yt,'t

, Z
t+1)

with T(t, y, a, z) ∶= (f(x, a, z),R(t, c, z)) and y = (x, c).
We define the histories

H
t

∶= (Y0, . . . , Yt) ∈Ht

∶= E
Y

×E
Y

× . . . ×E
Y�������������������������������������������������������������������������������������������������������������������

t+1 times

.

The sequence of confidence regions ⇥
t

, t ∈ T , will represent the learning

about ✓∗ based on the observed history H
t

, t ∈ T .
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Adaptive Robust Control

A robust control problem can be viewed as a game between a controller

and the nature.

The controller plays history-dependent strategies ' that belong to

A = {('
t

)
t∈T ′ � 't

∶H
t

→ A, t ∈ T ′}.
Adaptive robust control: the nature plays history-dependent strategies

 that belong to

 = {( 
t

)
t∈T ′ �  t

∶H
t

→⇥
t

, t ∈ T ′}.

Remark. The strong robust case corresponds to

 
K

= {( 
t

)
t∈T ′ �  t

∶H
t

→⇥, t ∈ T ′}.
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Adaptive Robust Control

Define the Markov transition probability kernel on E
Y

Q(B � t, y, a, ✓) ∶=P
✓

(Y
t+1 ∈ B � Yt = y,'t

= a),
for each (t, y, a, ✓) ∈ T ′ ×E

Y

×A ×⇥,

Using Ionescu-Tulcea theorem, define the canonical law of the state
process Y on ET+1

Y

as

Q', h0
(B0,B1, . . . ,BT )
= �

B0

��
BT

Q(dxT �T − 1, xT−1,'T−1(hT−1), T−1(hT−1))
�Q(dx1 � 0, x0,'0(h0), 0(h0))�h0(dx0)
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Adaptive Robust Control

The adaptive robust hedging problem

inf
'∈A sup

Q∈Q', 
µ

EQL(X'

T

),
where

Q', 
µ

∶= {Q', 

µ

, ∈ },
and

 = {( 
t

)
t∈T ′ �  t

∶H
t

→⇥
t

, t ∈ T ′}.
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Adaptive Robust Control

Adaptive Robust DPP

Theorem

The solution '∗ = ('∗
t

(h
t

))
t∈T ′ of

inf
'∈A sup

Q∈Q', 
µ

EQL(X'

T

),
is the same as the solution of the following Bellman equations:

W
T

(y) = ` (x) ,
W

t

(y) = inf
a∈A sup

✓∈⌧↵(t,✓̃)�EY

W
t+1(y)Q(dy � t, y, a, ✓),

for any y = (x, ✓̃) ∈ E
Y

and t = T − 1, . . . ,0.
Note that the optimal strategy at time t is such that '∗

t

(h
t

) = '∗
t

(y
t

).
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Adaptive Robust Control Dynamic Optimal Portfolio Selection

Example: Dynamic Optimal Portfolio Selection
An investor is deciding on investing in a risky asset and a risk-free

banking account by maximizing the expected utility u(V
T

) of the
terminal wealth:

inf
'∈A sup

Q∈Q', 
h0

EQ[−u(VT

)]

r - the constant risk free rate

Z
t

- the excess return on the risky asset

Assume that Z
t

= µ + �"
t

, where "
t

are i.i.d. N (0,1)
The dynamics of the wealth process produced by a s.f. strategy

V
t+1 = Vt

(1 + r +'
t

Z
t+1), t ∈ T ′,

with V0 = v0, and where '
t

is the proportion of the wealth invested

in the risky asset from t to t + 1.
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Adaptive Robust Control Dynamic Optimal Portfolio Selection

The MLE ✓̂
t

= (µ̂
t

, �̂2
t

) of the unknown parameter ✓∗ = (µ∗, (�∗)2) can
be expressed in the following recursive way:

µ̂
t+1 = t

t + 1 µ̂t

+ 1

t + 1Zt+1,
�̂2
t+1 = t

t + 1 �̂2t +
t

(t + 1)2 (µ̂t

−Z
t+1)2

Due to asymptotic normality of the MLEs, we have

t

�̂2
t

(µ̂
t

− µ∗)2 + t

2�̂4
t

(�̂2
t

− (�∗)2)2 d��→
t→∞ �2

2.

Consequently, the recursive 1 − ↵ confidence regions take the form

⇥
t

= ⌧
↵

(t, µ̂, �̂2) ∶= �(µ,�2) ∈ R2 ∶ t

�̂2
(µ̂ − µ)2 + t

2�̂4
(�̂2 − �2)2 ≤ 

↵

�
with 

↵

being the (1 − ↵)–quantile of the �2
2 distribution.
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Adaptive Robust Control Dynamic Optimal Portfolio Selection

The Markov decision process Y
t

= (V '

t

, µ̂
t

, �̂2
t

) has dynamics

Y
t+1 = T(t, Yt,'t

, Z
t+1)

where

T(t, v, µ̂, �̂2, a, z) =
�v(1 + rf + az), t

t + 1 µ̂ +
1

t + 1z,
t

t + 1 �̂2 +
t

(t + 1)2 (µ̂ − z)2�

The corresponding robust Bellman equation becomes

W
T

(v, µ̂, �̂2) = u(v),
W

t

(v, µ̂, �̂2) = sup
a∈A inf(µ,�2)∈⌧↵(t,µ̂,�̂2)Eµ,�

�W
t+1 �T(t, v, µ̂, �̂2, a,Zt+1)��
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Adaptive Robust Control Dynamic Optimal Portfolio Selection

We consider the following setting:

CRRA utility function u(x) = x

1−�
1−� , with � = 40,

Return of the risk-free asset : r = 0,
Excess return true mean and standard deviation : µ∗ = 1%, �∗ = 4%
Initial guess on model parameters : µ̂0 = 2% and �̂0 = 1%
Initial endowment : V0 = 100
A = [0,1], i.e. optimal strategies at time t to be between 0 and 1.
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Thank You !

The end of the talk ...

but not of the story
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