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ABSTRACT 

We discuss certain latest developments in 

methodology and approaches to solve ordinary 

differential equations (ODE), stochastic differential 

equations (SDE), partial differential equations 

(PDE), partial integro-differential equations (PIDE) 

and related objects analytically.  

These approaches are used in both Modern Physics 

and Quantitative Finance both theoretically and in 

practical applications. An additional advantage is 

that the approaches developed in Physics could be 

often applied in Quantitative Finance & vice versa.  

In our presentation, we will show that these 

analytical methodologies are making both 

research and its implementation in both Physics 

and Quantitative Finance much more efficient.  
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conditions in Physics and Quantitative Finance 
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Advantages of Analytical Approaches to Solving ODE, 
SDE, PDE and PIDE 

x Though ODE, SDE, PDE and PIDE are primarily solved using 
numerical methods in both academia and industry today, analytical 
approaches have their profound advantages 

x The following are these advantages: 
o Analytical approaches are precise while numerical methods 

are approximate 
o Analytical approaches are much faster than numerical methods 
o Analytical approaches are producing the same results by 

definition while numerical methods might produce different 
results when run twice (e.g., Monte Carlo); this consistency is 
a very important advantage 

o Analytical approaches produce much better and much faster 
sensitivities than numerical methods (e.g., cross-Gamma 
effect proves the point) 

o The results of analytical approaches are formulas that, with 
some assumptions, represent laws of nature, psychology or 
economy (e.g.,  Einstein’s 2mcE  or a Black-Scholes formula) 
by giving an explicit dependency of the results on its 
underlying parameters while numerical methods operate like 
black boxes where one should put the inputs to get the 
outputs out of them 

x The disadvantage of the analytical approaches compared to numerical 
methods is that they are often not trivial to obtain, so they are currently 
not known for many ODE, SDE, PDE and PIDE, and numerical 
methods are still extensively being used in these cases 

x Our research is geared towards development of the non-trivial 
analytical approaches 

x The ultimate goal would be to develop a general theory of 
analytical solution for them, but let’s start with the general 
approach for Physics and Quantitative Finance 



 

                                                                                                                                                                                                        STATE STREET CORPORATION      6 
 

 

Application of these Analytical Methodologies to Modern 
Physics and Quantitative Finance – General Approach 

 

x For Physics, the analytical methodologies below are being applied 
to: 
o The Heat Equation – its1-dimensional formulation is 

 

 

 

o The Wave Equation – its 1-dimensional formulation is 
 

  

 
o Schodinger and other PDEs and PIDEs of Particle Physics 

and Quantum Mechanics including Generalized Gross-
Pitaevskii Equations (GGPEs) below 

o We are applying the analytical methodologies below to solve 
homogeneous and non-homogeneous Schrodinger equations 
with various boundary conditions 

o One of the perspective directions in Modern Physics lately is 
to study interaction of various particles in 2-dimensional and 
3-dimensional media; GGPEs in 2-dimensional media for 2 
wave functions could be written in the form: 
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o These non-homogeneous PDEs are derived by varying the 
energy functional with respect to the wave functions u and v. 
If we substitute u from the second equation to the first 
equation (or, visa versa, v from the first equation to the 
second equation), we will get a complex 4-dimensional 
nonlinear PDE, so we solved the first non-homogeneous 
linear PDE closed-form, expressed this way u in terms of v, 
substituted u in the second PDE to obtain the following PIDE: 
 

 

We have solved GGPEs via a decomposition of both wave 

functions into the orthonormal bases after going to polar 

coordinates numerically (though we computed 6 integrals 

needed closed-form) and now are finalizing working on the 

analytical approximation solution of the PIDE above using the 

analytical methodologies discussed below; the nearest goal is 

to find an analytical approximation (numerico-analytical) 

solution for this PIDE and then go to the analytical solution 

with further theoretical developments, per below 

x It could be proved, similarly to the above, that solving a PIDE is 
equivalent to solving a system of non-homogeneous PDEs (one 
could also trivially decompose a PIDE into a PDE and an integral 
equation or a convolution); for numerical solution purposes, it is 

vvkuxxk
x
vk

x
vk

t
v

kt
ddxdyeyxv

kk
k t

tk
yx

tk
xxtk

2
82172

2

2

62
1

2

5
40

)(4
)(

)(4
)(

)(

21

4 ||),(1),,(
2

2
2

2
2

2
1

2
1

3

��
w
w

�
w
w

�
w
w

 
�³ ³ ³

f�

f�

f�

f�

�

�
�

�

�
���

W
WW WW

W

,432
2

2

22
1

2

1 vkuk
x
uk

x
uk

t
u

 �
w
w

�
w
w

�
w
w



 

                                                                                                                                                                                                        STATE STREET CORPORATION      8 
 

 

probably better to present a PIDE in terms of a system of non-
homogeneous PDEs and then to solve them numerically; for 
analytical approaches, it is probably better to deduce a PIDE from 
a system of non-homogeneous PDEs, like we did above, and then 
solve the PIDE analytically using the analytical approaches, per 
below 

x Another approach in Physic to the solution of such PDEs and 
PIDEs is to use a parameter-driven solution and then find an 
energy via optimization closed-form 

x And the third approach in Physics is to deduce PIDEs to PDEs and 
then PDEs to ODEs via explicit harmonics as functions of time 
(say, tieyxvtyxu Z),(),,(  ) and then solve the ODE either trivially (if the 
ODE is with constant coefficients) or using the methodologies 
below (if the ODE has variable coefficients; e.g., integral 
transforms) 

x For Quantitative Finance, let’s start with a famous Black-Scholes 
PDE (we are putting it in its generalized form; from now on, we are 
treating PDEs as partial cases of PIDEs where λ = 0, per below) 

 

 

(here S is an Underlying Asset Value, t is Valuation Time, V(S, t) is a 

Derivative’s Price, μ is a term-structured drift, σ is a term-structured 

Implied Volatility and r is a term-structured risk-free interest rate), 

PDEs and PIDEs are widely applied to pricing and risking derivative 

securities and their portfolios (for the multi-dimensional derivative 

security or a portfolio of derivatives, the following PDE could be used: 
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where S1,…, Sm are Underlying Values for m Assets (possibly, from 

different Asset Classes) or Factors, t is Valuation Time, V(S1,…, Sm, 

t) is a Derivative’s (Portfolio) Price, μ are term-structured drifts, σ are 

term-structured Implied Volatilities, ρ are term-structured Correlation 

coefficients, r is a term-structured risk-free interest rate) 

x For both 1-dimensional derivatives, multi-dimensional derivatives 
and their portfolios, different and more complex PDEs and PIDEs 
could be used, as we shall see below 

x We will show the examples of PDEs and PIDEs for structured and 
non-structured derivative products below, but the general approach 
is to solve them analytically by using one of the analytical 
approaches below, combination of them, by developing a novel 
approach, a new theory or a general theory (that is the ultimate 
goal) 

x These analytical approaches could be also applied to the ODEs, 
PDEs and PIDEs that are used in high frequency trading, 
processing, modeling and data including parameter calibration, for 
example, to solve a Hamilton-Jacobi-Bellman (HJB) PDE 

x These nonlinear and linear ODEs, PDEs and PIDEs, including HJB 
PDE, should be tackled similarly to the differential equations above 
and below, as well as using the most recent analytical approaches 
developed by PDE researchers including us 

x So, let’s give several examples of these analytical approaches that 
could also be applied to pricing products with recent developments 
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Developments in these Analytical Models and their 
Applications with Examples 

x Let’s give the examples, besides 2 PDEs above, with the approaches 
suggested 

x To value spread options (or any options where the underlying could 
be positive or negative), the following Hull-White (normal with mean 
reversion) PDE is used: 

 

 

(here S is an Underlying Asset Value, t is Valuation Time, V(S, t) is a 

Derivative’s Price, μ is a term-structured Long-Term Mean, ν is a 

term-structured Mean Reversion Speed, σ is a term-structured 

Implied Volatility, r is a term-structured risk-free interest rate); it is 

solved by using a non-integral transform that gets rid of mean 

reversion above and then using an integral Fourier transform and an 

inverse Fourier transform, per below 

x If we want to value options on a lognormal asset with mean reversion 
(say, CDS spread without a jump, yield, realized variance, etc.), we 
would use a Black-Karasinski PDE 
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Derivative’s Price, μ is a term-structured Long-Term Mean, ν is a 
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Implied Volatility, r is a term-structured risk-free interest rate); it is 

solved by using u = ln S and a non-integral transform that gets rid of 

mean reversion above and then using a Fourier transform and an 

inverse Fourier transform, per below 

x It’s important to note that in Black-Karasinski PDE and SDE, a natural 
logarithm of the lognormal asset reverts to the mean rather than the 
asset itself; if the lognormal asset itself reverts to the mean in the 
SDE, a corresponding PDE could be reduced to 

 

 

Here m’(t) is a drift in the corresponding SDE; with a further functional 

change, we are obtaining an Andreasen-Vecer PDE for Asian 

Options on discrete average as 

 

 

    There is no closed-form solution for this PDE; we established an   

equivalence of this PDE for Asian Options on discrete average and a 

lognormal mean-reverting itself asset SDE and now working on the 

analytical solution of this PDE.  

x To value spread options (or any options where the underlying could 
be positive or negative), the following Cox-Ingersoll-Ross (CIR) 
(normal with mean reversion and square root of the underlying-
dependent volatility) PDE could be used as well: 
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(here S is an Underlying Asset Value, t is Valuation Time, V(S, t) is a 

Derivative’s Price, μ is a term-structured Long-Term Mean, ν is a term-

structured Mean Reversion Speed, σ is a term-structured Implied 

Volatility, r is a term-structured risk-free interest rate); it is solved by 

using a non-integral transform that gets rid of mean reversion above 

and then using an integral Fourier transform (though it is harder than for 

the Black-Scholes PDE, Hull-White PDE or Black-Karasinski PDE) and 

an inverse Fourier transform, per below 

x We could expand CIR to a lognormal case, with the same notations 
and the same analytical solution approach as for CIR + u = ln S, to 
arrive at the following PDE: 

 

 

 

x We are accounting for Liquidity in such PDEs generalizing it to the 
following PDE: 
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x If Liquidity is perfect (L is ∞ in the equation above), this PDE 
becomes the prior PDEs 

x We could also account for Liquidity in a Black-Karasinski PDE (a 
good idea from the financial crisis, as all the PDEs above assume a 
perfect liquidity that is definitely not the case during the crisis) using 
the following nonlinear PDE that is generalizing the above: 
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(here S is an Underlying Asset Value, t is Valuation Time, V(S, t) is a 

Derivative’s Price, μ is a term-structured Long-Term Mean, ν is a term-

structured Mean Reversion Speed, σ is a term-structured Implied 

Volatility, c(k) are term-structured weights that depend on liquidity 

(stochastic in future models), fk() are, generally speaking, nonlinear 

(and not necessarily differentiable) functions of Gamma, r is a term-

structured risk-free interest rate); for some partial cases of fk(), using 

the ideas above, we obtained closed-form solutions for European 

options, though corresponding PDEs, similarly to MBS PDE that will be 

discussed below, proved to be reduced to non-homogeneous ones, 

along with analytical approximations for non-European options; for other 

cases of fk(), we obtained analytical approximations as well; other 

authors suggested their own analytical approaches to solve such PDEs 

• For multi-dimensional (multi-asset and hybrid) derivatives and 
portfolios of one-dimensional (one-factor) and multi-dimensional 
(multi-factor) derivatives, the nonlinear PDE above will be 
generalized to the following multi-dimensional nonlinear PDE: 
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term-structured Correlation coefficients, d(i) and c(l)(k) are term-

structured weights that depend on liquidity (stochastic in future 

models), fk() are, generally speaking, nonlinear (and not 

necessarily differentiable) functions of Gamma, r is a term-

structured risk-free interest rate; for some partial cases of fk(), 
using the ideas above and generalizing a one-dimensional case, 

we obtained closed-form solutions for European options, though 

corresponding PDEs, similarly to MBS PDE that will be discussed 

below, proved to be reduced to non-homogeneous ones, along 

with analytical approximations for non-European optionality and 

other cases of fk()  

• Such a generalization (with possible switch for some assets from 
the lognormal mean-reverted dynamics above to a normal mean-
reverted dynamics) could be done for all the multi-asset and hybrid 
products described below, as well as exotic one-dimensional ones, 
so let’s briefly look at them 

• The following is a 2-dimensional Paul Wilmott PDE for a 
Convertible Bond: 

 

 

(here V is a price of a Convertible Bond, t is Valuation Time, S is a 

Stock Price Per Share, r is a Credit-Risky Interest Rate, d is a Dividend 

Yield, a and b are mean reversion parameters, σ is a Stock Implied 

Volatility, w is an Interest Rate Implied Volatility and ρ is a correlation 

coefficient between the Stock and the Interest Rate); this PDE and its 
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partial cases should be valued using Fourier and other integral and non-

integral transforms to get an analytical solution for European Options 

x The following is a multi-dimensional non-homogeneous PDE that is 
valuing a key element of a Mortgage-Backed Security (MBS), per 
below: 
   
     

   

 
    
      

 

 
    
            

   
        

   
              

   
               

where U(S, O, T) =               –        
x Here U is a price of an MBS option portion, t is Valuation Time, S is a 

Prepayment Speed (PSA), r is a risk-free interest rate, O is an 
Option-Adjusted Spread (OAS),    is a PSA Implied Volatility,    is 
an OAS Implied Volatility,    is an Outstanding Mortgage Balance, 
   is a PSA drift, ρ is a correlation coefficient between the PSA and 
the OAS,           are OAS mean reversion parameters (      is a 
Long-Term Mean and    is a Mean Reversion Speed), PTR is a 
Pass-Through (Mortgage) Rate, P is a Par Amount and T is maturity; 
this PDE is solved closed-form via our analytical approaches  

x We are solving the PDE using integral and non-integral transforms; 
we obtained an analytical approximation solution and just arrived at a 
closed-form solution, similarly to solving the first GGPE in Particle 
Physics applications above, for this PDE and its generalizations using 
approaches below & approaches to PDE solution in Physics above 

x Many more examples could be given for PDEs (Asian Integral 
Average Options PDE, a popular Heston 2-dimensional PDE), but 
let’s give an example of a (Merton-76) PIDE: 
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(here V is a price of an Option, t is Valuation Time, S is a Stock Price 

Per Share, r is a Risk-Free term-structured Interest Rate, d is a term-

structured Dividend Yield, σ is a Stock Term-Structured Implied 

Volatility, O is a jump intensity, j is a relative jump size and J  is a 

Volatility of a jump size); this PIDE should be valued using Fourier and 

other integral and non-integral transforms, as well as Operator Theory, 

per below, to get an analytical solution for European Options; here, we 

are starting by using the property of a convolution that the Fourier-

image of a convolution is a product of Fourier-images of both functions 

to the convolution in the PIDE above, simultaneously with applying this 

Fourier transform to the PDE part of the PIDE (after the change of 

variable u = ln S); this PIDE is simpler than a PIDE above that we 

derived from GGPEs, as  

x It is linear while our PIDE derived from GGPEs is nonlinear 

x The derivative pricing function in the PIDE above is real-valued 

while our wave functions in Physics are complex-valued 

x There is no integration over time while there is one in Physics (it 

will be integration over time if we generalize our MBS PDE to 

PIDE by assuming jump-diffusion for OAS, PSA and possibly 

interest rates) 

x There are more dimensions in the Physics PIDE (though the 

above Quantitative Finance PIDE could be generalized to more 

than one spatial dimension as well) 
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x The most recent developments in these analytical approaches that 
should result in our forthcoming publications this year include: 
o An article in Modern Physics that includes, among other 

analytical results, a generalization of an infinite series Cauchy 
product theorem to the multi-dimensional and infinite 
dimensional (operator) cases 

o A paper that should include Model Risk Analytics methodologies 
that are using ODEs, PDEs, PIDEs and operator theory, among 
other analytical and statistical approaches 

o Possible publication in the area of non-homogeneous PDEs that 
will use an analytical approach to a solution of a system of such 
PDEs to price Structured Products and Exotic Derivatives 

o A possible paper that will focus on application of the above 
analytical approaches to Risk Analytics of major financial risk 
types – Market, Credit, Liquidity, Operational and Model Risks 

o A probable paper in the application of these analytical 
approaches in Modern Advanced Physics 

x So, let’s discuss the analytical approaches to solving PDEs and PIDE 
in the framework of the general approach and all the analytical 
approaches discussed above (used and developed in both Modern 
Physics and Quantitative Finance) and with the purpose of further 
development of new approaches and potentially a new theory and a 
general theory of these approaches 
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Overview of Analytical Approaches to Solving ODEs, 
PDEs and PIDEs 

So, the following is an overview of these PDE approaches: 

o Integral Transforms: 

� Fourier transform – is used to solve ODEs, PDEs 
and PIDEs in Physics and Finance by its 
application to, say, a normally distributed variable, 
calculating a Fourier-image using the initial or 
terminal condition and then applying an inverse 
Fourier transform to come up with the solution (is 
a challenge in CIR and even a bigger challenge in 
Heston (called “Heston trap”); for PIDEs, in 
addition to the above, a Fourier transform is 
applied to a convolution to get a product of Fourier 
images (as mentioned above), though the inverse 
transform step is a challenge and requires 
additional work (operators, etc.) 

� Laplace transform – is used to solve ODEs, PDEs 
and PIDEs in Physics and Finance by its 
application to a positive variable (usually, time); 
the biggest challenge, though, is to get a solution 
after the inverse Laplace transform calculation, as 
the integral has complex boundaries and is not 
straightforward to assess 

� Fourier-Wiener-Feinman transform – very useful in 
both Physics and Finance, as it has a clear inverse 
from the same family, a clear product from the 
same family and other properties; it could be used 
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to solve ODEs, PDEs and PIDEs not only with 
constant and term-structured coefficients, but also 
with linear and some non-linear variable 
coefficients, so we are continuing our research for it 

� Other integral transforms – there are other integral 
transforms used mostly in Physics, but we think 
that the perspective direction is to gear the 
research to creating (and further improving 
existing) integral transforms that are capable to 
solve linear ODEs, PDEs & PIDEs with variable 
coefficients and nonlinear PDEs and PIDEs  

o Non-Integral Transforms (d’Alembert and beyond) – 
French philosopher, Encyclopedist and mathematician 
Jean-Baptiste le Rond d’Alembert applied the first non-
integral transform to solve a one-dimensional wave 
equation in the 18th century; this approach is being 
extended to many dimensions, other equations in 
Finance and Physics and to a nonlinear paradigm; the 
approach is quite powerful together with the above, 
especially to one-dimensional and multi-dimensional 
wave equations and their generalizations 

o Operator Theory: 

� Integral Operators – they are used in the form of 
integral transforms, per above, & several other forms 

� Differential Operators – a very powerful and 
perspective tool for the solution of PDEs and 
PIDEs in Finance and Physics; they could be used 
in many forms and via many approaches by 
themselves, as well as participating in more 
general approaches and solutions 
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� General philosophy – operator theory is a very 
powerful tool to be used to solve linear and 
nonlinear ODEs, PDEs and PIDEs, but the 
general philosophy is to use it in conjunction with 
the approaches above and/or the part of a new 
approach or a general theory 

o Connection between Integral / Non-Integral Transforms 
and Operator Theory / Application of Operators as an 
approach to solve PDEs / PIDEs with finite boundary 
conditions in Physics and Math Finance – our recent 
research shows that Integral / Non-Integral Transforms 
and their inverses could be expressed via operators 
above and vice versa; this allows to more effectively solve 
PDEs and PIDEs with finite boundary conditions in both 
Physics (when heat or field characteristics are studied in a 
finite 1-dimensional or multi-dimensional volume) and 
Mathematical Finance (for certain exotic options, 
structured trades and their portfolios) 

o Other Functional Analysis methodologies (e.g., Integral 
Equations) – other Functional Analysis methodologies, 
including Integral Equations, functionals, norms and 
scalar products applications, etc. Again, these 
methodologies should be applied to solving linear and 
nonlinear ODEs, PDEs and PIDEs in conjunction with 
the approaches above and/or the part of a new 
approach or a general theory 

o Other analytical approaches are being developed by 
us and other researchers and should be developed 
further. One of the main goals of this research is to find 
effective analytical solutions for linear and nonlinear 
ODEs, PDEs and PIDEs and develop their theory  
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Conclusion and Outline of Further Research in this Subject 

x We presented an overview of analytical approaches to the 
solution of ODEs, PDEs and PIDEs in light of their application 
to Physics and pricing and risking derivative securities and 
their portfolios and gave the examples of structured and non-
structured products 

x These analytical approaches are especially important in Risk 
Management in Finance (with a great potential on the Desks 
and in Model Validation) and in Physics, especially in rapidly 
developing areas of Particle Physics, Solid State Physics and 
Spectroscopy, as well as Material Science 

x Further research in the area of analytical approaches to 
solving linear and nonlinear ODEs, PDEs and PIDEs should 
be focused on: 
o Further development in the area of Integral and Non-

Integral Transforms 
o Further development in the area of Operator Theory  
o Further developing Functional Analysis methodologies 
o Further development of other Analytical approaches to 

solving ODEs, PDEs and PIDEs, as well as the new 
theories that will enable us to analytically solve certain 
classes of linear and nonlinear ODEs, PDEs and PIDEs 
and then to build a general theory of analytical solution of 
all the PDEs and PIDEs; this should also include 
exploring a connection between differential forms and 
linear and non-linear dynamic systems and use analytical 
approaches for solutions for these dynamic systems to 
optimize usage of differential forms and tensors in 
modern field theory in Modern Physics and Modern 
Quantitative Finance 
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