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Black-Scholes

Money market with interest rate r = 0

One stock

dP (t) = ↵P (t)dt+ P (t)dW (t), t 2 [0, T ]

European option paying g(P (T ))?
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for t < T and

 (T, p) = g(p)

“Shortcomings”

No transaction costs

No preferences

No bid-ask spread



DPZ Model

Incorporates a bid-ask spead

Proportional transaction costs

Prices set by indi↵erence pricing

Transaction costs =
p
✏, risk aversion = 1/✏
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for t < T , p > 0, y 2 R and

z✏(T, y, p) = g(p)



Barles & Soner
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Nonlinear Black-Scholes
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“Eigenvalue” ODE
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Merton problem

v(x, y) = sup
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e��tU(c(t))dt,
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dX(t) = rX(t)dt� c(t)dt

dY (t) = ↵Y (t)dt+ �Y (t)dW (t)

X(t) + Y (t) � 0

HJB
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v = v(z) with z = x+ y � 0,
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Davis & Norman
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where
x+ (1� µ)y � 0 and x+ (1 + �)y � 0

Soner &Touzi (Wilmott & Whaley, Janecek & Shreve ...)

� = µ = ✏3,
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Asymptotics
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“Eigenvalue” ODE for w
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where

w(z, ⇢) =
w(z, ⌘⇢)
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Question: What happens when we have n risky assets?

Option pricing in small transaction cost, large risk aversion limit
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Portfolio optimization in small transaction cost limit
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Prototypical “eigenvalue” problem

Find � 2 R such that

max {���u� f, |Du|� 1} = 0, x 2 Rn

has a solution u : Rn ! R.

Basic assumptions

f is convex and superlinear

lim

|x|!1

f(x)

|x| = +1.

!D u ! ! 1

"Λ # $ u % f #

!D u ! % 1



Solution of eigenvalue problem

There is a unique � = �⇤ such that

max {���u� f, |Du|� 1} = 0

has a solution u

lim

|x|!1

u(x)

|x| = 1.

There is a convex solution u⇤
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Remark

If f is rotationally symmetric, u⇤ 2 C2

(Rn

)



PDE

max {�⇤ ��u� f, |Du|� 1} = 0

and u⇤ : Rn ! R is a convex solution.

Three motivating questions

1 What is the “geometry” of

⌦ := {x 2 Rn

: |Du⇤(x)| < 1}?

2 Is u⇤ “unique”?

3 Regularity of u⇤ for problems with general convex gradient
constraint?



Bounded domain

As f is superlinear,

�⇤ ��u⇤ � f < 0

for all large |x|

=) ⌦ is bounded.

!:"!"D u#" $ 1#%

"D u#" "1

Conjecture

⌦ is a convex set with smooth boundary.



Singular controls

X⌫

(t) :=
p
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⌫(0) = 0

t 7! ⌫(t) is left-continuous
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Ergodic problem
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Reflected di↵usion

If
⌦ = {x 2 Rn

: |Du⇤(x)| < 1}

has smooth boundary and �Du⇤ is never tangent to @⌦,
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Invariance

If u satisfies

max {�⇤ ��u� f, |Du|� 1} = 0,

and

lim

|x|!1

u(x)

|x| = 1

then so does u+ C.

Uniqueness known

n = 1

for rotational solutions
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Basic observation

Note:
|Du|  1 () |Du|2  1

so
max

�
�⇤ ��u� f, |Du|2 � 1

 
= 0,

This is a uniformly convex gradient constraint.

Penalization

�⇤ ��u✏ + �
✏

(|Du✏|2 � 1) = f

for x 2 D and

u✏|
@D

= u.
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Smooth fit

H : Rn ! R convex and u : Rn ! R is a solution

max {�⇤ ��u� f,H(Du)} = 0, x 2 Rn.

Is u continuously di↵erentiable?

Examples (n = 3)

H(Du) = u
x1

H(Du) = |u
x1 |+ |u

x3 |� 1

H(Du) = max{|u
x1 |, |ux2 |, |ux3 |}� 1



Thank You!


