Eigenvalue problems arising in models with small transaction costs

Ryan Hynd

University of Pennsylvania

Black-Scholes

- Money market with interest rate $r=0$
- One stock

$$
d P(t)=\alpha P(t) d t+P(t) d W(t), \quad t \in[0, T]
$$

- European option paying $g(P(T))$?

$\psi(t, P(t))$

$$
\psi_{t}+\frac{1}{2} \sigma^{2} p^{2} \psi_{p p}=0
$$

for $t<T$ and

$$
\psi(T, p)=g(p)
$$

"Shortcomings"

- No transaction costs
- No preferences
- No bid-ask spread

DPZ Model

- Incorporates a bid-ask spead
- Proportional transaction costs
- Prices set by indifference pricing

Transaction costs $=\sqrt{\epsilon}$, risk aversion $=1 / \epsilon$

$$
\max \left\{-z_{t}-\frac{1}{2} \sigma^{2} p^{2}\left(z_{p p}+\frac{1}{\epsilon}\left(z_{p}-y\right)^{2}\right),\left|z_{y}\right|-\sqrt{\epsilon} p\right\}=0
$$

for $t<T, p>0, y \in \mathbb{R}$ and

$$
z^{\epsilon}(T, y, p)=g(p)
$$

Barles \& Soner

$$
z^{\epsilon}(t, p, y) \approx \psi(t, p)+\epsilon u\left(p \frac{\psi_{p}(t, p)-y}{\sqrt{\epsilon}}\right)
$$

Nonlinear Black-Scholes

$$
\psi_{t}+\lambda\left(p^{2} \psi_{p p}\right)=0
$$

for $t<T$ and $p>0$

$$
\psi(T, p)=g(p)
$$

"Eigenvalue" ODE

$$
\max \left\{\lambda-\frac{\sigma^{2}}{2}\left(A+A^{2} u^{\prime \prime}+\left(x+A u^{\prime}\right)^{2}\right),\left|u^{\prime}\right|-1\right\}=0
$$

Merton problem

$$
v(x, y)=\sup _{c} \mathbb{E} \int_{0}^{\infty} e^{-\beta t} U(c(t)) d t
$$

where

$$
\left\{\begin{array}{l}
d X(t)=r X(t) d t-c(t) d t \\
d Y(t)=\alpha Y(t) d t+\sigma Y(t) d W(t) \\
X(t)+Y(t) \geq 0
\end{array}\right.
$$

HJB

$$
\beta v-\left(\frac{1}{2} \sigma^{2} y^{2} v_{y y}+\alpha y v_{y}+r x v_{x}\right)-U^{*}\left(v_{x}\right)=0
$$

$v=v(z)$ with $z=x+y \geq 0$,

$$
\xi=\frac{(\alpha-r) v^{\prime}(z)}{\sigma^{2}\left(-v^{\prime \prime}(z)\right)} \quad \text { and } \quad c=U^{\prime}\left(v^{\prime}(z)\right)
$$

Davis \& Norman

$$
\begin{aligned}
& \min \left\{\beta v-\left(\frac{1}{2} \sigma^{2} y^{2} v_{y y}+\alpha y v_{y}+r x v_{x}\right)-U^{*}\left(v_{x}\right)\right. \\
&\left.(1+\lambda) v_{x}-v_{y},-(1-\mu) v_{x}+v_{y}\right\}=0
\end{aligned}
$$

where

$$
x+(1-\mu) y \geq 0 \quad \text { and } \quad x+(1+\lambda) y \geq 0
$$

Soner \&Touzi (Wilmott \& Whaley, Janecek \& Shreve ...)

$\lambda=\mu=\epsilon^{3}$,

$$
v^{\epsilon}(x, y) \approx v(z)-\epsilon^{2} u(z)-\epsilon^{4} w\left(z, \frac{y-\xi}{\epsilon}\right)
$$

Asymptotics

$$
v^{\epsilon}(x, y) \approx v(z)-\epsilon^{2} u(z)-\epsilon^{4} w\left(z, \frac{y-\xi}{\epsilon}\right)
$$

"Eigenvalue" ODE for w

$$
\max \left\{\bar{a}-\frac{1}{2} \bar{\alpha}^{2} \bar{w}_{\rho \rho}-\frac{1}{2} \sigma^{2} \rho^{2},\left|\bar{w}_{\rho}\right|-1\right\}=0
$$

where

$$
\bar{w}(z, \rho)=\frac{w(z, \eta \rho)}{\eta v^{\prime}}, \quad \bar{\alpha}=\frac{\alpha}{\eta}, \quad \bar{a}=\frac{a}{\eta v^{\prime}}
$$

and $\eta=-v^{\prime} / v^{\prime \prime}$.

Equation for u

$$
a=\beta u-\left(\frac{1}{2} \sigma^{2} \xi^{2} u^{\prime \prime}+(r z+\xi(\alpha-r)-c) u^{\prime}\right)
$$

Question: What happens when we have n risky assets?
Option pricing in small transaction cost, large risk aversion limit

$$
\max _{1 \leq i \leq n}\left\{\lambda-\frac{1}{2} \operatorname{tr}\left[\sigma \sigma^{t}\left(A+A D^{2} u A+(x+A D u) \otimes(x+A D u)\right)\right],\left|u_{x_{i}}\right|-1\right\}=0
$$

Portfolio optimization in small transaction cost limit

$$
\max _{1 \leq i, j \leq n}\left\{\bar{a}-\frac{1}{2} \operatorname{tr}\left[\bar{\alpha} \bar{\alpha}^{t} D_{\rho}^{2} \bar{w}\right]-\frac{1}{2}|\sigma \rho|^{2}, \bar{w}_{\rho_{i}}+\bar{w}_{\rho_{j}}-\lambda^{i, j}\right\}=0
$$

Prototypical "eigenvalue" problem

Find $\lambda \in \mathbb{R}$ such that

$$
\max \{\lambda-\Delta u-f,|D u|-1\}=0, \quad x \in \mathbb{R}^{n}
$$

has a solution $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Basic assumptions

f is convex and superlinear

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=+\infty
$$

Solution of eigenvalue problem

There is a unique $\lambda=\lambda^{*}$ such that

$$
\max \{\lambda-\Delta u-f,|D u|-1\}=0
$$

has a solution u

$$
\lim _{|x| \rightarrow \infty} \frac{u(x)}{|x|}=1
$$

There is a convex solution u^{*}

$$
u_{x_{i} x_{j}}^{*} \in L^{\infty}\left(\mathbb{R}^{n}\right)
$$

Remark

If f is rotationally symmetric, $u^{*} \in C^{2}\left(\mathbb{R}^{n}\right)$

PDE

$$
\max \left\{\lambda^{*}-\Delta u-f,|D u|-1\right\}=0
$$

and $u^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex solution.

Three motivating questions

(1) What is the "geometry" of

$$
\Omega:=\left\{x \in \mathbb{R}^{n}:\left|D u^{*}(x)\right|<1\right\} ?
$$

(2) Is u^{*} "unique"?
(3) Regularity of u^{*} for problems with general convex gradient constraint?

Bounded domain

As f is superlinear,

$$
\lambda^{*}-\Delta u^{*}-f<0
$$

for all large $|x|$
$\Longrightarrow \Omega$ is bounded.

Conjecture

Ω is a convex set with smooth boundary.

Singular controls

$$
X^{\nu}(t):=\sqrt{2} W(t)+\nu(t), \quad t \geq 0
$$

with

$$
\left\{\begin{array}{l}
\nu(0)=0 \\
t \mapsto \nu(t) \text { is left-continuous } \\
|\nu|(t):=T V_{\nu}[0, t)<\infty, \quad t>0
\end{array}\right.
$$

Ergodic problem

$$
\lambda^{*}=\inf _{\nu} \limsup _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left\{\int_{0}^{t} f\left(X^{\nu}(s)\right) d s+|\nu|(t)\right\}
$$

Reflected diffusion

If

$$
\Omega=\left\{x \in \mathbb{R}^{n}:\left|D u^{*}(x)\right|<1\right\}
$$

has smooth boundary and $-D u^{*}$ is never tangent to $\partial \Omega$,

$$
\left\{\begin{array}{l}
d X(t)=\sqrt{2} d W(t)-D u^{*}(X(t)) d \xi(t), t \geq 0 \\
X(0)=0, \xi(0)=0 \\
\xi(t)=\int_{0}^{t} 1_{X(s) \in \partial \Omega} d \xi(s), \quad t \geq 0
\end{array}\right.
$$

An optimal control!

$$
\nu^{*}(t):=-\int_{0}^{t} D u^{*}(X(s)) d \xi(s)
$$

Invariance

If u satisfies

$$
\max \left\{\lambda^{*}-\Delta u-f,|D u|-1\right\}=0
$$

and

$$
\lim _{|x| \rightarrow \infty} \frac{u(x)}{|x|}=1
$$

then so does $u+C$.

Uniqueness known

Like simplicity of σ_{1} ?

- $n=1$
- for rotational solutions

$$
\left\{\begin{aligned}
-\Delta v & =\sigma_{1} v, & & x \in D \\
v & =0, & & x \in \partial D
\end{aligned}\right.
$$

Basic observation

Note:

$$
|D u| \leq 1 \quad \Longleftrightarrow \quad|D u|^{2} \leq 1
$$

so

$$
\max \left\{\lambda^{*}-\Delta u-f,|D u|^{2}-1\right\}=0
$$

This is a uniformly convex gradient constraint.

$$
\begin{aligned}
& \text { Penalization } \\
& \lambda^{*}-\Delta u^{\epsilon}+\beta_{\epsilon}\left(\left|D u^{\epsilon}\right|^{2}-1\right)=f \\
& \text { for } x \in D \text { and } \\
& \qquad\left.u^{\epsilon}\right|_{\partial D}=u
\end{aligned}
$$

Smooth fit

$H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex and $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a solution

$$
\max \left\{\lambda^{*}-\Delta u-f, H(D u)\right\}=0, \quad x \in \mathbb{R}^{n}
$$

Is u continuously differentiable?

Examples $(n=3)$

- $H(D u)=u_{x_{1}}$
- $H(D u)=\left|u_{x_{1}}\right|+\left|u_{x_{3}}\right|-1$
- $H(D u)=\max \left\{\left|u_{x_{1}}\right|,\left|u_{x_{2}}\right|,\left|u_{x_{3}}\right|\right\}-1$

Thank You!

