Eigenvalue problems arising in models with small transaction costs

Ryan Hynd

University of Pennsylvania

Black-Scholes

- Money market with interest rate r = 0
- One stock

$$dP(t) = \alpha P(t)dt + P(t)dW(t), \quad t \in [0, T]$$

• European option paying g(P(T))?

$\psi(t, P(t))$

$$\psi_t + \frac{1}{2}\sigma^2 p^2 \psi_{pp} = 0$$

for t < T and

$$\psi(T, p) = g(p)$$

"Shortcomings"

- No transaction costs
- No preferences
- No bid-ask spread

DPZ Model

- Incorporates a bid-ask spead
- Proportional transaction costs
- Prices set by indifference pricing

Transaction costs $=\sqrt{\epsilon}$, risk aversion $=1/\epsilon$

$$\max\left\{-z_t - \frac{1}{2}\sigma^2 p^2 \left(z_{pp} + \frac{1}{\epsilon}(z_p - y)^2\right), |z_y| - \sqrt{\epsilon}p\right\} = 0$$

for t < T, p > 0, $y \in \mathbb{R}$ and

$$z^{\epsilon}(T, y, p) = g(p)$$

Barles & Soner

$$z^{\epsilon}(t, p, y) \approx \psi(t, p) + \epsilon u \left(p \frac{\psi_p(t, p) - y}{\sqrt{\epsilon}} \right)$$

Nonlinear Black-Scholes

$$\psi_t + \lambda(p^2 \psi_{pp}) = 0$$

for t < T and p > 0

$$\psi(T, p) = q(p)$$

"Eigenvalue" ODE

$$\max \left\{ \lambda - \frac{\sigma^2}{2} (A + A^2 u'' + (x + Au')^2), |u'| - 1 \right\} = 0$$

Merton problem

 $v(x,y) = \sup_{c} \mathbb{E} \int_{0}^{\infty} e^{-\beta t} U(c(t)) dt,$

where

$$\begin{cases} dX(t) = rX(t)dt - \frac{c(t)}{c(t)}dt \\ dY(t) = \alpha Y(t)dt + \sigma Y(t)dW(t) \\ X(t) + Y(t) > 0 \end{cases}$$

HJB

$$\beta v - \left(\frac{1}{2}\sigma^2 y^2 v_{yy} + \alpha y v_y + r x v_x\right) - U^*(v_x) = 0$$

$$v = v(z)$$
 with $z = x + y \ge 0$,

$$\xi = \frac{(\alpha - r)v'(z)}{\sigma^2(-v''(z))} \quad \text{and} \quad c = U'(v'(z))$$

Davis & Norman

$$\min \left\{ \beta v - \left(\frac{1}{2} \sigma^2 y^2 v_{yy} + \alpha y v_y + r x v_x \right) - U^*(v_x), \right.$$

$$(1 + \lambda) v_x - v_y, -(1 - \mu) v_x + v_y \right\} = 0$$

where

 $\lambda = \mu = \epsilon^3$.

$$x + (1 - \mu)y \ge 0 \quad \text{and} \quad x + (1 + \lambda)y \ge 0$$

Soner
$$\& Touzi$$
 (Wilmott $\&$ Whaley, Janecek $\&$ Shreve ...)

$$v^{\epsilon}(x,y) \approx v(z) - \frac{\epsilon^2}{\epsilon} u(z) - \frac{\epsilon^4}{\epsilon} w\left(z, \frac{y-\xi}{\epsilon}\right)$$

Asymptotics

$$v^{\epsilon}(x,y) \approx v(z) - \epsilon^{2}u(z) - \epsilon^{4}w\left(z, \frac{y-\xi}{\epsilon}\right)$$

"Eigenvalue" ODE for w

$$\max\left\{\overline{a} - \frac{1}{2}\overline{\alpha}^2 \overline{w}_{\rho\rho} - \frac{1}{2}\sigma^2 \rho^2, |\overline{w}_{\rho}| - 1\right\} = 0$$

where

$$\overline{w}(z,\rho) = \frac{w(z,\eta\rho)}{\eta v'}, \quad \overline{\alpha} = \frac{\alpha}{\eta}, \quad \overline{a} = \frac{a}{\eta v'}$$

and $\eta = -v'/v''$.

$$\check{}$$
 Equation for u

$$a = \beta u - \left(\frac{1}{2}\sigma^2 \xi^2 u'' + (rz + \xi(\alpha - r) - c)u'\right)$$

Question: What happens when we have n risky assets?

Option pricing in small transaction cost, large risk aversion limit

$$\max_{1 \leq i \leq n} \left\{ \lambda - \frac{1}{2} \mathrm{tr} \left[\sigma \sigma^t \left(A + A D^2 u A + \left(x + A D u \right) \otimes \left(x + A D u \right) \right) \right], |u_{x_i}| - 1 \right\} = 0$$

Portfolio optimization in small transaction cost limit

$$\max_{1 \leq i,j \leq n} \left\{ \overline{a} - \frac{1}{2} \mathrm{tr} \left[\overline{\alpha} \ \overline{\alpha}^t D_{\rho}^2 \overline{w} \right] - \frac{1}{2} |\sigma \rho|^2, \overline{w}_{\rho_i} + \overline{w}_{\rho_j} - \lambda^{i,j} \right\} = 0$$

Prototypical "eigenvalue" problem

Find $\lambda \in \mathbb{R}$ such that

$$\max \{\lambda - \Delta u - f, |Du| - 1\} = 0, \quad x \in \mathbb{R}^n$$

has a solution $u: \mathbb{R}^n \to \mathbb{R}$.

Basic assumptions

f is **convex** and **superlinear**

$$\lim_{|x| \to \infty} \frac{f(x)}{|x|} = +\infty.$$

Solution of eigenvalue problem

There is a **unique** $\lambda = \lambda^*$ such that

$$\max \left\{ \lambda - \Delta u - f, |Du| - 1 \right\} = 0$$

has a solution u

$$\lim_{|x| \to \infty} \frac{u(x)}{|x|} = 1.$$

There is a convex solution u^*

$$u_{x_i x_i}^* \in L^{\infty}(\mathbb{R}^n).$$

Remark

If f is rotationally symmetric, $u^* \in C^2(\mathbb{R}^n)$

PDE

$$\max \left\{ \lambda^* - \Delta u - f, |Du| - 1 \right\} = 0$$

and $u^*: \mathbb{R}^n \to \mathbb{R}$ is a convex solution.

Three motivating questions

• What is the "geometry" of

$$\Omega := \{ x \in \mathbb{R}^n : |Du^*(x)| < 1 \}?$$

- \bullet Is u^* "unique"?
- ullet Regularity of u^* for problems with general convex gradient constraint?

Bounded domain

As f is superlinear,

$$\lambda^* - \Delta u^* - f < 0$$

for all **large** |x|

$$\Longrightarrow \Omega$$
 is **bounded**.

Conjecture

 Ω is a **convex** set with **smooth** boundary.

Singular controls

$$X^{\nu}(t) := \sqrt{2}W(t) + \nu(t), \quad t \ge 0$$

with
$$\begin{cases} \nu(0)=0\\ t\mapsto \nu(t) \text{ is left-continuous}\\ |\nu|(t):=TV_{\nu}[0,t)<\infty,\quad t>0 \end{cases}$$

 $\lambda^* = \inf_{\nu} \limsup_{t \to \infty} \frac{1}{t} \mathbb{E} \left\{ \int_0^t f(X^{\nu}(s)) ds + |\nu|(t) \right\}$

Reflected diffusion

lf

$$\Omega = \{ x \in \mathbb{R}^n : |Du^*(x)| < 1 \}$$

has smooth boundary and $-Du^*$ is never **tangent** to $\partial\Omega$,

$$\begin{cases} dX(t) = \sqrt{2}dW(t) - Du^*(X(t))d\xi(t), t \ge 0 \\ X(0) = 0, \ \xi(0) = 0, \\ \xi(t) = \int_0^t 1_{X(s) \in \partial\Omega} d\xi(s), \quad t \ge 0 \end{cases}$$

An optimal control!

$$\nu^*(t) := -\int_0^t Du^*(X(s))d\xi(s)$$

Invariance

If u satisfies

$$\max \{\lambda^* - \Delta u - f, |Du| - 1\} = 0,$$

and

$$\lim_{|x| \to \infty} \frac{u(x)}{|x|} = 1$$

then so does u + C.

Uniqueness known

- n = 1
- for rotational solutions

Like simplicity of
$$\sigma_1$$
?

$$\begin{cases}
-\Delta v = \sigma_1 v, & x \in D \\
v = 0, & x \in \partial D
\end{cases}$$

Basic observation

Note:

$$|Du| \le 1 \quad \Longleftrightarrow \quad |Du|^2 \le 1$$

so

$$\max \{\lambda^* - \Delta u - f, |Du|^2 - 1\} = 0,$$

This is a **uniformly convex** gradient constraint.

Penalization

$$\lambda^* - \Delta u^\epsilon + \beta_\epsilon (|Du^\epsilon|^2 - 1) = f$$
 for $x \in D$ and

 $u^{\epsilon}|_{\partial D} = u.$

Smooth fit

 $H:\mathbb{R}^n \to \mathbb{R}$ convex and $u:\mathbb{R}^n \to \mathbb{R}$ is a solution

 $\max \{\lambda^* - \Delta u - f, H(Du)\} = 0, \quad x \in \mathbb{R}^n.$

Evamples (n -

- Examples (n=3)
 - \bullet $H(Du) = u_{x_1}$
 - $H(Du) = |u_{x_1}| + |u_{x_3}| 1$

Is u continuously differentiable?

• $H(Du) = \max\{|u_{x_1}|, |u_{x_2}|, |u_{x_3}|\} - 1$

Thank You!