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Black-Scholes

@ Money market with interest rate r = 0

@ One stock

dP(t) = aP(t)dt + P(t)dW (t), t€[0,T]

@ European option paying g(P(T))?

'I/Y(fﬂ P(f))

1 “Shortcomings”
2 92
Py + 50 P Ypp =0 @ No transaction costs

e No preferences

for t <T and

Y(T,p) = g(p)

@ No bid-ask spread




DPZ Model

@ Incorporates a bid-ask spead
@ Proportional transaction costs

@ Prices set by indifference pricing

\

Transaction costs = /€, risk aversion = 1/e

1 1
max {—zt - §U2p2 <zpp + ;(zp - y)2> ;s |2y| — ﬁp} =0

fort <T,p>0,yeRand

2(T,y,p) = g(p)




Barles & Soner

2°(t,p,y) = ¢(t,p) + eu (pW)

Nonlinear Black-Scholes A

Pt + Mp*Ypp) =0

fort<T and p >0

Y(T,p) = g(p) | A

“Eigenvalue” ODE

2
max{/\ - %(A—l—AQu" + (z + Au')?), || — 1} =0




Merton problem

v(z,y) = s%pIE/O e PtU(e(t))dt,

|

where
dX(t) =rX(t)dt — c(t)dt
dY (t) = oY (t)dt + oY (t)dW (t)
X(t)+Y() =0

HJB

1 .
Bv — (5023;211% + ayvy, + r:m;x> — (@) =0

v=uwv(z) withz=2+y >0,

_(O‘_T)v(z) n P /’l)/Z
5——( ()ad U'(v'(2))




Davis & Norman

1
min {Bv — (§a2y2vyy + ayv, + m:vx) - U*(vz),
(1 4+ XNz — vy, —(1 — vz + vy} =0

where

r+(1—-—py>0 and z+(1+N)y>0

Soner &Touzi (Wilmott & Whaley, Janecek & Shreve ...)




v (2, y) ~ v(z) — €u(z) — tw (z’ y Z é)

“Eigenvalue” ODE for w

1 1
Max \ @ — @ Wp, — 50°p°, [Wy| =10 =0
2 2
where ( |
w wz, np — (6 _ a
'U](Zup):—l’ o — a:_/
v n nv
and n = —v' /",

Equation for u

a = pu— <%0’2€2’U/’ L (T’Z T f(a — 7-) _ C)’ul>




Question: What happens when we have n risky assets? J

Option pricing in small transaction cost, large risk aversion limit

 max {)\ — %tr [oot (A+ AD?*uA + (z + ADu) ® (z + ADw))], |ua; | — 1} =0
<i<n

Portfolio optimization in small transaction cost limit

— 1 — ¢t 2 1 2 _ a o
g, {7 g D3] = Glonlt Wy 47, 30 =0




Prototypical “eigenvalue” problem

Find A € R such that
max {\ — Au— f,|Du| -1} =0, ze€R"

has a solution u : R™ — R.

[Dul| =1
Basic assumptions

f is convex and superlinear /

[Du| <1

A—Au=1)
lim @ = +o0.
|z]—oo |Z] -




Solution of eigenvalue problem
There is a unique A\ = \* such that

max {\ — Au— f,|Du| -1} =0

has a solution u

m M—1.

lelooo 2|

There is a convex solution u*

U, € L®(R").

If f is rotationally symmetric, u* € C?(R"™)




max {\* — Au — f,|Du| —1} =0

and v* : R™ — R is a convex solution.

Three motivating questions
@ What is the “geometry” of

Q:={zeR": |Du(z)| < 1}7?

Q Is u* “unique”?

© Regularity of u* for problems with general convex gradient
constraint?




As f is superlinear,

Bounded domain f\&m =1

N~ Aut — f <0 f \
‘ Q={|Dw| <1} |

\ J

for all large || |

— ) is bounded. ) \\ /

() is a convex set with smooth boundary. \




Singular controls

XV(t) == V2W(t) +v(t), t>0

with
v(0) =0
t — v(t) is left-continuous a.s.
lv|(t) :=TV,[0,t) <oo, t>0

| A\

Ergodic problem

A* 1nfhmsup—IE{/ F(X"(s))ds + |v|(t )}

V. t—o0

A




Reflected diffusion
If

Q={zxeR": |Du*(z)| < 1}
has smooth boundary and —Du* is never tangent to 0f2,
dX(t) = v2dW (t) — Du*(X (t))dé(t), t > 0
X(0)=0, £(0) =0,
£(t) = fot Lx(s)candé(s), t=>0

An optimal control!




Invariance
If u satisfies
max {\* — Au — f,|Du| — 1} =0,
and
o
joj—00 2]

then so does u + C.

Like simplicity of 017

Uniqueness known

O m=1 {—szalv, zeD

o for rotational solutions v =0, Y =N1D)




Basic observation

Note:
|Du| <1 <= |Dul*<1

max {\* — Au — f,|Dul? — 1} =0,

This is a uniformly convex gradient constraint.

" . B
f

N — Auf + B (|[Duc? —1) = f

for x € D and

ulop = u.




H :R" — R convex and v : R® — R is a solution
max {\* — Au— f,H(Du)} =0, z&R".

Is u continuously differentiable?

N,

Examples (n = 3)
o H(Du) = uy,
o H(Du) = |ug, | + |ugs| — 1
o H(Du) = max{|ug, |, |tuz,|, [t} — 1

A




Thank Youl




