A Dynamic Eisenberg-Noe Model of Financial Contagion

Zach Feinstein

Electrical and Systems Engineering, Washington University in St. Louis

Joint work with Tathagata Banerjee and Alex Bernstein

Mathematical Finance, Probability, and Partial Differential Equations Conference May 17-19, 2017

The Eisenberg & Noe Model

Network Model with Local Interactions Only:

EISENBERG & NOE (2001)

- n financial firms
- Nominal liability matrix: $(L_{ij})_{i,j=0,1,2,...,n}$
- Total liabilities: $\bar{p}_i = \sum_{j=0}^n L_{ij}$
- Relative liabilities:

$$\pi_{ij} = \begin{cases} \frac{L_{ij}}{\bar{p}_i} & \text{if } \bar{p}_i > 0, \\ 0 & \text{if } \bar{p}_i = 0. \end{cases}$$

Network Model with Local Interactions Only:

Network Model with Local Interactions Only:

- Liquid endowment: $x \in \mathbb{R}^n_+$
- Obligations fulfilled via transfers of the liquid asset.
- Equilibrium computed as fixed point: $p \in \mathbb{R}^n_+$:

$$p_i = \bar{p}_i \wedge \left(x_i + \sum_{j=1}^n \pi_{ji} p_j\right), \quad i = 1, 2, ..., n$$

Network Model with Local Interactions Only:

- Liquid endowment: $x \in \mathbb{R}^n_+$
- Obligations fulfilled via transfers of the liquid asset.
- Equilibrium computed as fixed point: $p \in \mathbb{R}^n_+$:

$$p_i = \bar{p}_i \wedge \left(x_i + \sum_{j=1}^n \pi_{ji} p_j\right), \quad i = 1, 2, ..., n$$

• Existence: Tarski's fixed point theorem: maximal and minimal fixed points $p^{\downarrow} \leq p^{\uparrow}$.

Network Model with Local Interactions Only: Uniqueness

- $S \subseteq \{1, 2, ..., n\}$ is a surplus set if $L_{ij} = 0$ and $\sum_{i \in S} x_i > 0$ for all $(i, j) \in S \times S^c$
- $o(i) = \{j \in \{1, 2, ..., n\} \mid \exists \text{ directed path from } i \text{ to } j\}$
- If o(i) is a surplus set for every bank i then there exists a unique payment vector $p := p^{\uparrow} = p^{\downarrow}$ (Banach fixed point theorem)

Network Model with Local Interactions Only: Payments to Wealths

• Given clearing payments $p \in [0, \bar{p}]$ the resultant wealths are

$$V = x + \Pi^{\mathsf{T}} p - \bar{p}$$

• Given resultant wealths $V \in [x - \bar{p}, x + \Pi^{\mathsf{T}} \bar{p}]$ the clearing payments are

$$p = \left(\bar{p} - V^{-}\right)^{+}$$

Network Model with Local Interactions Only: Payments to Wealths

• Given clearing payments $p \in [0, \bar{p}]$ the resultant wealths are

$$V = x + \Pi^{\mathsf{T}} p - \bar{p}$$

• Given resultant wealths $V \in [x - \bar{p}, x + \Pi^{\mathsf{T}} \bar{p}]$ the clearing payments are

$$p = (\bar{p} - V^-)^+$$

• Wealths can be computed as the fixed point of

$$V = x + \Pi^{\mathsf{T}} (\bar{p} - V^{-})^{+} - \bar{p}$$

Dynamic Eisenberg & Noe Financial Contagion Model:

Discrete Time

Discrete-Time Network Model: Capponi & Chen (2015), Ferrara, Langfield, Liu & Ota (2016), Feinstein (2017)

- Obligations owed at discrete times (e.g. clearing at the end of the day)
- Now need to distringuish between illiquidity and insolvency
- Firms can be:
 - Solvent and liquid
 - Solvent and illiquid
 - Insolvent and illiquid
 - Insolvent and liquid

Discrete-Time Network Model:

- Positive equity accrues over time
- Unpaid debts roll forward in time
- Total liabilities: $\bar{p}_i(t) = \sum_{j=0}^n L_{ij}(t) + V_i(t-1)^-$
- Relative liabilities: $\pi_{ij}(t) = \frac{L_{ij}(t) + \pi_{ij}(t-1)V_i(t-1)^-}{\bar{p}_i(t)}$
- Fixed point at time t:

$$V(t) = V(t-1)^{+} + x(t) + \Pi(t)^{\mathsf{T}} \left(\bar{p}(t) - V(t)^{-}\right)^{+} - \bar{p}(t)$$

Discrete-Time Network Model:

• Fixed point at time t:

$$V(t) = V(t-1)^{+} + x(t) + \Pi(t)^{\mathsf{T}} \left(\bar{p}(t) - V(t)^{-}\right)^{+} - \bar{p}(t)$$

Discrete-Time Network Model:

• Fixed point at time t:

$$V(t) = V(t-1)^{+} + x(t) + \Pi(t)^{\mathsf{T}} (\bar{p}(t) - V(t)^{-})^{+} - \bar{p}(t)$$

$$= V(t-1) + c(t) - A(t,V)^{\mathsf{T}} V(t)^{-} + A(t-1,V)^{\mathsf{T}} V(t-1)^{-}$$

$$c_{i}(t) = x_{i}(t) + \sum_{j=0}^{n} (L_{ji}(t) - L_{ij}(t))$$

$$a_{ij}(t,V) = \frac{L_{ij}(t) + a_{ij}(t-1,V)V_{j}(t-1)^{-} - \pi_{ij}(t) (\bar{p}_{i}(t) - V_{i}(t)^{-})^{+}}{V_{i}(t)^{-}}$$

Discrete-Time Network Model:

• Fixed point at time t:

$$V(t) = V(t-1)^{+} + x(t) + \Pi(t)^{\mathsf{T}} \left(\bar{p}(t) - V(t)^{-}\right)^{+} - \bar{p}(t)$$

$$= V(t-1) + c(t) - A(t,V)^{\mathsf{T}} V(t)^{-} + A(t-1,V)^{\mathsf{T}} V(t-1)^{-}$$

$$c_{i}(t) = x_{i}(t) + \sum_{j=0}^{n} \left(L_{ji}(t) - L_{ij}(t)\right)$$

$$a_{ij}(t,V) = \frac{L_{ij}(t) + a_{ij}(t-1,V) V_{j}(t-1)^{-} - \pi_{ij}(t) \left(\bar{p}_{i}(t) - V_{i}(t)^{-}\right)^{+}}{V_{i}(t)^{-}}$$

• Can be thought of as generalization with other choices of c_i and a_{ij} as well

Discrete-Time Network Model: Existence and Uniqueness

$$V(t) = V(t-1) + c(t) - A(t,V)^{\mathsf{T}}V(t)^{-} + A(t-1,V)^{\mathsf{T}}V(t-1)^{-}$$

• Specific model: existence and uniqueness follow exactly from Eisenberg & Noe (2001)

Discrete-Time Network Model: Existence and Uniqueness

$$V(t) = V(t-1) + c(t) - A(t,V)^{\mathsf{T}}V(t)^{-} + A(t-1,V)^{\mathsf{T}}V(t-1)^{-}$$

- Specific model: existence and uniqueness follow exactly from Eisenberg & Noe (2001)
- Generalized model: A(t, V) with $A(t, V)^{\mathsf{T}}V^{\mathsf{-}}$ bounded
 - Nonspeculative: No firm benefits from another's losses
 - Any nonspeculative system has a greatest and least fixed point $V^{\uparrow}(t) \geq V^{\downarrow}(t)$
 - If society node 0 is strictly nonspeculative and $a_{i0} > 0$ for all i, then there exists a unique fixed point V(t)

Discrete-Time Network Model: Example with Loans

$$V(t) = V(t-1) + c(t) - A(t,V)^{\mathsf{T}} V(t)^{-} + A(t-1,V)^{\mathsf{T}} V(t-1)^{-}$$

- Receivership model
 - Solvent and liquid firms pay off obligations in full
 - Solvent and illiquid firms receive loan to be repaid at next time period covering total losses
 - Insolvent and illiquid firms pay what they can, rest rolls forward
 - Solvent firms at time t are: $S(t) = \{i \in S(t-1) \mid g_i(V) \ge 0\}$
 - Relative liabilities:

$$a_{ij}^{R}(t,V) = \begin{cases} 0 & \text{if } i \in S(t), j \neq 0\\ 1 & \text{if } i \in S(t), j = 0\\ a_{ij}(t,V) & \text{if } i \notin S(t) \end{cases}$$

- NOT a nonspeculative system
- Auction model can also be constructed (CAPPONI & CHEN (2015))

Discrete-Time Network Model: Receivership Example

- Without loans: $V = (1, -100, -100)^{\mathsf{T}}$
- With loans: Consider $g_i(V) = V_i + 10$. Two solutions exist:
 - $V = (1, -100, -99)^{\mathsf{T}}$ with no loans given
 - $V = (2, -1, 0)^T$ with loan of 1 to firm 1

Dynamic Eisenberg & Noe Financial Contagion Model:

Continuous Time

Continuous-Time Network Model: $\Delta t \rightarrow 0$

$$V(t) = V(t - \Delta t) + \dot{c}(t)\Delta t - A(t, V)^{\mathsf{T}}V(t)^{-} + A(t - \Delta t, V)^{\mathsf{T}}V(t - \Delta t)^{-}$$

- $\dot{c}(t)$ is velocity of assets minus liabilities
- Limit provides differential equation:

$$dV(t) = dc(t) - d\left[A(t, V)^{\mathsf{T}}V(t)^{-}\right]$$

• Relative liabilities: $\pi_{ij}(t)$ solves the ODE:

$$V_{i}(t)^{-} \frac{d\pi_{ij}}{dt}(t) + \left(\sum_{k=0}^{n} L_{ik}(t)\right) \pi_{ij}(t) = L_{ij}(t)$$

Continuous-Time Network Model: $\Delta t \rightarrow 0$

$$V(t) = V(t - \Delta t) + \dot{c}(t)\Delta t - A(t, V)^{\mathsf{T}}V(t)^{\mathsf{-}} + A(t - \Delta t, V)^{\mathsf{T}}V(t - \Delta t)^{\mathsf{-}}$$

- $\dot{c}(t)$ is velocity of assets minus liabilities
- Limit provides differential equation:

$$dV(t) = dc(t) - d\left[A(t, V)^{\mathsf{T}}V(t)^{-}\right]$$

• Relative liabilities: $\pi_{ij}(t)$ solves the ODE:

$$V_i(t)^{-} \frac{d\pi_{ij}}{dt}(t) + \left(\sum_{k=0}^{n} L_{ik}(t)\right) \pi_{ij}(t) = L_{ij}(t)$$

• Existence and uniqueness for nonspeculative system with strictly nonspeculative societal node

Continuous-Time Network Model: Differential Equation

• If c(t) is deterministic:

$$dV(t) = \left(I - \left[A(t, V)^{\mathsf{T}} - \langle J_x A(t, V), V(t)^{-} \rangle\right] \operatorname{diag}(V(t) < 0)\right)^{-1}$$

$$\times \left[dc(t) - \dot{A}(t, V)^{\mathsf{T}} V(t)^{-} dt\right]$$

$$\left(\dot{a}_{ij}(t, V) dt + \nabla a_{ij}(t, V)^{\mathsf{T}} dV(t)\right) V_i(t) + a_{ij}(t, V) dV_i(t)$$

$$= -L_{ij}(t) + \pi_{ij}(t) \left[\bar{p}_i(t) - V_i(t)^{-}\right]^{+}$$

• If c(t) is an Ito process, include appropriate quadratic variation term and V(t) is an Ito process

Continuous-Time Network Model: Eisenberg & Noe

- $L_{ij}(t) \equiv L_{ij}$ is constant over time
- $a_{ij}(t,V) \equiv L_{ij}/\sum_{k=0}^{n} L_{ik} = \pi_{ij}$ is constant over time and wealths
- Wealth differential equation:

$$dV(t) = (I - A^{\mathsf{T}} \operatorname{diag}(V(t) < 0))^{-1} dc(t)$$

• If $c(0) + \int_0^1 dc(t) = x + \sum_{j=0}^n (L_j - L_j)$ and $V_0 = c(0)$ then V_1 is the Eisenberg & Noe clearing solution

Continuous-Time Network Model: Eisenberg & Noe

Figure: 4 bank network with $c_0 = x$ and $dc(t) = \sum_{i=0}^{n} (L_j - L_j) dt$

Continuous-Time Network Model: Eisenberg & Noe

Figure: 4 bank network with $c_0 = x$ and dc(t) Brownian bridge

Continuous-Time Network Model: Eisenberg & Noe

Figure: 4 bank network with $c_0 = x$ and dc(t) Brownian bridge

Thank You!

Thank You!

- EISENBERG, NOE (2001): Systemic risk in financial systems
- Banerjee, Bernstein, Feinstein (Working Paper): Time dynamic Eisenberg & Noe financial network models